ما قبل التفاضل والتكامل الأمثلة

حل باستخدام المصفوفة وقاعدة كرامر 6x-5y=-1 , 2y-2x=0
,
خطوة 1
أعِد ترتيب و.
خطوة 2
مثّل سلسلة المعادلات في شكل مصفوفة.
خطوة 3
Find the determinant of the coefficient matrix .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
Write in determinant notation.
خطوة 3.2
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 3.3
بسّط المحدد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
اضرب في .
خطوة 3.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.2.1
اضرب في .
خطوة 3.3.1.2.2
اضرب في .
خطوة 3.3.2
اطرح من .
خطوة 4
Since the determinant is not , the system can be solved using Cramer's Rule.
خطوة 5
Find the value of by Cramer's Rule, which states that .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
خطوة 5.2
Find the determinant.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 5.2.2
بسّط المحدد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.1
اضرب في .
خطوة 5.2.2.1.2
اضرب في .
خطوة 5.2.2.2
أضف و.
خطوة 5.3
Use the formula to solve for .
خطوة 5.4
Substitute for and for in the formula.
خطوة 5.5
اقسِم على .
خطوة 6
Find the value of by Cramer's Rule, which states that .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
خطوة 6.2
Find the determinant.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 6.2.2
بسّط المحدد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
اضرب في .
خطوة 6.2.2.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.2.1
اضرب في .
خطوة 6.2.2.1.2.2
اضرب في .
خطوة 6.2.2.2
اطرح من .
خطوة 6.3
Use the formula to solve for .
خطوة 6.4
Substitute for and for in the formula.
خطوة 6.5
اقسِم على .
خطوة 7
اسرِد الحل لسلسلة المعادلات.