ما قبل التفاضل والتكامل الأمثلة

خطوة 1
أعِد كتابة المعادلة بصيغة الرأس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اعزِل إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.1.2
أضف إلى كلا المتعادلين.
خطوة 1.2
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.2.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2.2.4
اقسِم على .
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.2.4.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 1.2.4.2.1.1.3
ارفع إلى القوة .
خطوة 1.2.4.2.1.1.4
اضرب في .
خطوة 1.2.4.2.1.1.5
أخرِج العامل من .
خطوة 1.2.4.2.1.1.6
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1.6.1
أخرِج العامل من .
خطوة 1.2.4.2.1.1.6.2
ألغِ العامل المشترك.
خطوة 1.2.4.2.1.1.6.3
أعِد كتابة العبارة.
خطوة 1.2.4.2.1.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.2.1
أخرِج العامل من .
خطوة 1.2.4.2.1.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.2.2.1
أخرِج العامل من .
خطوة 1.2.4.2.1.2.2.2
ألغِ العامل المشترك.
خطوة 1.2.4.2.1.2.2.3
أعِد كتابة العبارة.
خطوة 1.2.4.2.1.2.2.4
اقسِم على .
خطوة 1.2.4.2.1.3
اضرب في .
خطوة 1.2.4.2.2
اطرح من .
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
عيّن قيمة لتصبح مساوية للطرف الأيمن الجديد.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
بما أن قيمة موجبة، إذن القطع المكافئ مفتوح على اليمين.
مفتوح على اليمين
خطوة 4
أوجِد الرأس .
خطوة 5
أوجِد ، المسافة من الرأس إلى البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمة في القاعدة.
خطوة 5.3
اضرب في .
خطوة 6
أوجِد البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
يمكن إيجاد بؤرة القطع المكافئ بجمع مع الإحداثي السيني إذا كان القطع المكافئ مفتوحًا على اليسار أو على اليمين.
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7
أوجِد محور التناظر بإيجاد الخط الذي يمر عبر الرأس والبؤرة.
خطوة 8
أوجِد الدليل.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
دليل القطع المكافئ هو الخط الرأسي الذي يمكن إيجاده بطرح من الإحداثي السيني للرأس إذا كان القطع المكافئ مفتوح على اليسار أو على اليمين.
خطوة 8.2
عوّض بقيمتَي و المعروفتين في القاعدة وبسّط.
خطوة 9
استخدِم خصائص القطع المكافئ لتحليل القطع المكافئ وتمثيله بيانيًا.
الاتجاه: مفتوح على اليمين
الرأس:
البؤرة:
محور التناظر:
الدليل:
خطوة 10