إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 1.3
اجمع البسوط على القاسم المشترك.
خطوة 1.4
اطرح من .
خطوة 1.5
انقُل السالب أمام الكسر.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.5
لها العاملان و.
خطوة 2.6
اضرب في .
خطوة 2.7
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.9
اضرب في .
خطوة 2.10
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.2
أخرِج العامل من .
خطوة 3.2.1.3
ألغِ العامل المشترك.
خطوة 3.2.1.4
أعِد كتابة العبارة.
خطوة 3.2.2
اضرب في .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.1.2
أخرِج العامل من .
خطوة 3.3.1.3
ألغِ العامل المشترك.
خطوة 3.3.1.4
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.1
اقسِم كل حد في على .
خطوة 4.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
احذِف العامل المشترك لـ و.
خطوة 4.2.3.1.1
أخرِج العامل من .
خطوة 4.2.3.1.2
ألغِ العوامل المشتركة.
خطوة 4.2.3.1.2.1
أخرِج العامل من .
خطوة 4.2.3.1.2.2
ألغِ العامل المشترك.
خطوة 4.2.3.1.2.3
أعِد كتابة العبارة.
خطوة 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 4.4
بسّط .
خطوة 4.4.1
أعِد كتابة بالصيغة .
خطوة 4.4.2
بسّط بَسْط الكسر.
خطوة 4.4.2.1
أعِد كتابة بالصيغة .
خطوة 4.4.2.1.1
أخرِج العامل من .
خطوة 4.4.2.1.2
أعِد كتابة بالصيغة .
خطوة 4.4.2.2
أخرِج الحدود من تحت الجذر.
خطوة 4.4.3
اضرب في .
خطوة 4.4.4
جمّع وبسّط القاسم.
خطوة 4.4.4.1
اضرب في .
خطوة 4.4.4.2
ارفع إلى القوة .
خطوة 4.4.4.3
ارفع إلى القوة .
خطوة 4.4.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.4.4.5
أضف و.
خطوة 4.4.4.6
أعِد كتابة بالصيغة .
خطوة 4.4.4.6.1
استخدِم لكتابة في صورة .
خطوة 4.4.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.4.4.6.3
اجمع و.
خطوة 4.4.4.6.4
ألغِ العامل المشترك لـ .
خطوة 4.4.4.6.4.1
ألغِ العامل المشترك.
خطوة 4.4.4.6.4.2
أعِد كتابة العبارة.
خطوة 4.4.4.6.5
احسِب قيمة الأُس.
خطوة 4.4.5
بسّط بَسْط الكسر.
خطوة 4.4.5.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 4.4.5.2
اضرب في .
خطوة 4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: