إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 2
خطوة 2.1
استخدِم لكتابة في صورة .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط .
خطوة 2.2.1.1
اضرب الأُسس في .
خطوة 2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 2.2.1.2
بسّط.
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد كتابة بالصيغة .
خطوة 2.3.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.3.1.2.1
طبّق خاصية التوزيع.
خطوة 2.3.1.2.2
طبّق خاصية التوزيع.
خطوة 2.3.1.2.3
طبّق خاصية التوزيع.
خطوة 2.3.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.3.1.3.1
بسّط كل حد.
خطوة 2.3.1.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.1.3.1.2
اضرب في بجمع الأُسس.
خطوة 2.3.1.3.1.2.1
انقُل .
خطوة 2.3.1.3.1.2.2
اضرب في .
خطوة 2.3.1.3.1.3
اضرب في .
خطوة 2.3.1.3.1.4
اضرب في .
خطوة 2.3.1.3.1.5
اضرب في .
خطوة 2.3.1.3.1.6
اضرب في .
خطوة 2.3.1.3.2
اطرح من .
خطوة 3
خطوة 3.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
أضف إلى كلا المتعادلين.
خطوة 3.1.3
اطرح من .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
اطرح من .
خطوة 3.4
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.4.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 3.4.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 3.4.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3.4.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 3.4.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 3.4.1.3.2
ارفع إلى القوة .
خطوة 3.4.1.3.3
ارفع إلى القوة .
خطوة 3.4.1.3.4
اضرب في .
خطوة 3.4.1.3.5
اطرح من .
خطوة 3.4.1.3.6
اضرب في .
خطوة 3.4.1.3.7
أضف و.
خطوة 3.4.1.3.8
اطرح من .
خطوة 3.4.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 3.4.1.5
اقسِم على .
خطوة 3.4.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | + | - | + | - |
خطوة 3.4.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | - | + | - |
خطوة 3.4.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | - | + | - | |||||||||
+ | - |
خطوة 3.4.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | - | + | - | |||||||||
- | + |
خطوة 3.4.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ |
خطوة 3.4.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - |
خطوة 3.4.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - |
خطوة 3.4.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
خطوة 3.4.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + |
خطوة 3.4.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- |
خطوة 3.4.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | |||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
خطوة 3.4.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - | ||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
خطوة 3.4.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | ||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
خطوة 3.4.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | ||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
خطوة 3.4.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | ||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ |
خطوة 3.4.1.5.16
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | - | ||||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
خطوة 3.4.1.5.17
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - | + | |||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
خطوة 3.4.1.5.18
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | + | |||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
+ | - |
خطوة 3.4.1.5.19
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | + | |||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + |
خطوة 3.4.1.5.20
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | + | |||||||||||
- | + | - | + | - | |||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
خطوة 3.4.1.5.21
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 3.4.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 3.4.2
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 3.4.2.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 3.4.2.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 3.4.2.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3.4.2.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 3.4.2.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 3.4.2.1.3.2
ارفع إلى القوة .
خطوة 3.4.2.1.3.3
ارفع إلى القوة .
خطوة 3.4.2.1.3.4
اضرب في .
خطوة 3.4.2.1.3.5
أضف و.
خطوة 3.4.2.1.3.6
اضرب في .
خطوة 3.4.2.1.3.7
اطرح من .
خطوة 3.4.2.1.3.8
أضف و.
خطوة 3.4.2.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 3.4.2.1.5
اقسِم على .
خطوة 3.4.2.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | + | - | + |
خطوة 3.4.2.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | - | + |
خطوة 3.4.2.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | - | + | ||||||||
+ | - |
خطوة 3.4.2.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | - | + | ||||||||
- | + |
خطوة 3.4.2.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | - | + | ||||||||
- | + | ||||||||||
+ |
خطوة 3.4.2.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
خطوة 3.4.2.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
خطوة 3.4.2.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 3.4.2.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 3.4.2.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
خطوة 3.4.2.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 3.4.2.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 3.4.2.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
خطوة 3.4.2.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 3.4.2.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
خطوة 3.4.2.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 3.4.2.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 3.4.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
أضف إلى كلا المتعادلين.
خطوة 3.8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.8.2
أوجِد قيمة في .
خطوة 3.8.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.8.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.8.2.3
بسّط.
خطوة 3.8.2.3.1
بسّط بَسْط الكسر.
خطوة 3.8.2.3.1.1
ارفع إلى القوة .
خطوة 3.8.2.3.1.2
اضرب .
خطوة 3.8.2.3.1.2.1
اضرب في .
خطوة 3.8.2.3.1.2.2
اضرب في .
خطوة 3.8.2.3.1.3
أضف و.
خطوة 3.8.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 3.8.2.3.1.4.1
أخرِج العامل من .
خطوة 3.8.2.3.1.4.2
أعِد كتابة بالصيغة .
خطوة 3.8.2.3.1.5
أخرِج الحدود من تحت الجذر.
خطوة 3.8.2.3.2
اضرب في .
خطوة 3.8.2.3.3
بسّط .
خطوة 3.8.2.4
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 3.9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.