ما قبل التفاضل والتكامل الأمثلة

Resolver para x لوغاريتم x+18- للأساس 5 لوغاريتم x-6=2 للأساس 5
خطوة 1
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و أعداد حقيقية موجبة وكان ، فإن مكافئة لـ .
خطوة 3
استخدِم الضرب التبادلي لحذف الكسر.
خطوة 4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
ارفع إلى القوة .
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
اضرب في .
خطوة 5
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اطرح من كلا المتعادلين.
خطوة 5.2
اطرح من .
خطوة 6
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أخرِج العامل من .
خطوة 6.2
أخرِج العامل من .
خطوة 6.3
أخرِج العامل من .
خطوة 7
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اقسِم كل حد في على .
خطوة 7.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.1.2
اقسِم على .
خطوة 7.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
اقسِم على .
خطوة 8
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اطرح من كلا المتعادلين.
خطوة 8.2
اطرح من .
خطوة 9
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اقسِم كل حد في على .
خطوة 9.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1.1
ألغِ العامل المشترك.
خطوة 9.2.1.2
اقسِم على .
خطوة 9.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
اقسِم على .