ما قبل التفاضل والتكامل الأمثلة

Resolver para x ( اللوغاريتم الطبيعي لـ x+1)/( اللوغاريتم الطبيعي لـ x-1)=2
خطوة 1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
أعِد كتابة العبارة.
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لكي تكون المعادلة متساوية، يجب أن يتساوى المتغير المستقل للوغاريتمات في كلا المتعادلين.
خطوة 3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
أعِد الكتابة.
خطوة 3.2.1.2
أعِد كتابة بالصيغة .
خطوة 3.2.1.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.1
طبّق خاصية التوزيع.
خطوة 3.2.1.3.2
طبّق خاصية التوزيع.
خطوة 3.2.1.3.3
طبّق خاصية التوزيع.
خطوة 3.2.1.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.1.1
اضرب في .
خطوة 3.2.1.4.1.2
انقُل إلى يسار .
خطوة 3.2.1.4.1.3
أعِد كتابة بالصيغة .
خطوة 3.2.1.4.1.4
أعِد كتابة بالصيغة .
خطوة 3.2.1.4.1.5
اضرب في .
خطوة 3.2.1.4.2
اطرح من .
خطوة 3.2.2
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 3.2.3
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
اطرح من كلا المتعادلين.
خطوة 3.2.3.2
اطرح من .
خطوة 3.2.4
اطرح من كلا المتعادلين.
خطوة 3.2.5
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.5.1
اطرح من .
خطوة 3.2.5.2
أضف و.
خطوة 3.2.6
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.1
أخرِج العامل من .
خطوة 3.2.6.2
أخرِج العامل من .
خطوة 3.2.6.3
أخرِج العامل من .
خطوة 3.2.7
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.2.8
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.9
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.9.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.9.2
أضف إلى كلا المتعادلين.
خطوة 3.2.10
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.