ما قبل التفاضل والتكامل الأمثلة

خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.1.4
أخرِج العامل من .
خطوة 2.1.5
أخرِج العامل من .
خطوة 2.1.6
أخرِج العامل من .
خطوة 2.1.7
أخرِج العامل من .
خطوة 2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.3
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.3.2
احذِف الأقواس غير الضرورية.
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 6.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
أعِد كتابة بالصيغة .
خطوة 6.2.3.2
أعِد كتابة بالصيغة .
خطوة 6.2.3.3
أعِد كتابة بالصيغة .
خطوة 6.2.3.4
أعِد كتابة بالصيغة .
خطوة 6.2.3.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6.2.3.6
انقُل إلى يسار .
خطوة 6.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.