إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.5
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.5.1
اضرب في .
خطوة 1.5.2
اضرب في .
خطوة 1.5.3
أعِد ترتيب عوامل .
خطوة 1.6
اجمع البسوط على القاسم المشترك.
خطوة 1.7
اطرح من .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط بالضرب.
خطوة 3.3.1.1
طبّق خاصية التوزيع.
خطوة 3.3.1.2
أعِد الترتيب.
خطوة 3.3.1.2.1
انقُل إلى يسار .
خطوة 3.3.1.2.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2
اضرب في بجمع الأُسس.
خطوة 3.3.2.1
انقُل .
خطوة 3.3.2.2
اضرب في .
خطوة 3.3.3
بسّط بالضرب.
خطوة 3.3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.3.2
اضرب.
خطوة 3.3.3.2.1
اضرب في .
خطوة 3.3.3.2.2
اضرب في .
خطوة 4
خطوة 4.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 4.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
أضف و.
خطوة 4.3
اطرح من كلا المتعادلين.
خطوة 4.4
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 4.5
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 4.6
بسّط.
خطوة 4.6.1
بسّط بَسْط الكسر.
خطوة 4.6.1.1
ارفع إلى القوة .
خطوة 4.6.1.2
اضرب .
خطوة 4.6.1.2.1
اضرب في .
خطوة 4.6.1.2.2
اضرب في .
خطوة 4.6.1.3
أضف و.
خطوة 4.6.1.4
أعِد كتابة بالصيغة .
خطوة 4.6.1.4.1
أخرِج العامل من .
خطوة 4.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 4.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 4.6.2
اضرب في .
خطوة 4.6.3
بسّط .
خطوة 4.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 5
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 6
خطوة 6.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2
بسّط الطرف الأيمن.
خطوة 6.2.1
احسِب قيمة .
خطوة 6.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.4
أوجِد قيمة .
خطوة 6.4.1
احذِف الأقواس.
خطوة 6.4.2
احذِف الأقواس.
خطوة 6.4.3
اطرح من .
خطوة 6.5
أوجِد فترة .
خطوة 6.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.5.4
اقسِم على .
خطوة 6.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
خطوة 7.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 7.2
بسّط الطرف الأيمن.
خطوة 7.2.1
احسِب قيمة .
خطوة 7.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 7.4
أوجِد قيمة .
خطوة 7.4.1
احذِف الأقواس.
خطوة 7.4.2
احذِف الأقواس.
خطوة 7.4.3
أضف و.
خطوة 7.5
أوجِد فترة .
خطوة 7.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.5.4
اقسِم على .
خطوة 7.6
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 7.6.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 7.6.2
اطرح من .
خطوة 7.6.3
اسرِد الزوايا الجديدة.
خطوة 7.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 8
اسرِد جميع الحلول.
، لأي عدد صحيح