ما قبل التفاضل والتكامل الأمثلة

Resolver para ? 2sin(x/3)+ الجذر التربيعي لـ 3=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
اقسِم على .
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
انقُل السالب أمام الكسر.
خطوة 3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
القيمة الدقيقة لـ هي .
خطوة 5
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 6
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 7
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اطرح من .
خطوة 7.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 7.3
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 8
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
يمكن حساب فترة الدالة باستخدام .
خطوة 8.2
استبدِل بـ في القاعدة للفترة.
خطوة 8.3
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
خطوة 8.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 8.5
اضرب في .
خطوة 9
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 9.2
اطرح من .
خطوة 9.3
اسرِد الزوايا الجديدة.
خطوة 10
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح