إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 1.1.1
أعِد كتابة في صورة زائد
خطوة 1.1.2
طبّق خاصية التوزيع.
خطوة 1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2.1
جمّع أول حدين وآخر حدين.
خطوة 1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.2.1
اقسِم كل حد في على .
خطوة 3.2.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.2.1.2
اقسِم على .
خطوة 3.2.3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 3.2.4
بسّط الطرف الأيمن.
خطوة 3.2.4.1
احسِب قيمة .
خطوة 3.2.5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 3.2.6
أوجِد قيمة .
خطوة 3.2.6.1
احذِف الأقواس.
خطوة 3.2.6.2
احذِف الأقواس.
خطوة 3.2.6.3
اطرح من .
خطوة 3.2.7
أوجِد فترة .
خطوة 3.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.7.4
اقسِم على .
خطوة 3.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح