ما قبل التفاضل والتكامل الأمثلة

الرسم البياني ((x+4)^2)/9-((y-5)^2)/16=1
خطوة 1
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الزائد. استخدِم هذه الصيغة لتحديد القيم المُستخدمة لإيجاد رؤوس القطع الزائد وخطوط تقاربه.
خطوة 3
طابِق القيم الموجودة في هذا القطع الزائد بقيم الصيغة القياسية. يمثل المتغير الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل، .
خطوة 4
يتبع مركز القطع الزائد الصيغة . عوّض بقيمتَي و.
خطوة 5
أوجِد ، المسافة من المركز إلى بؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المسافة من المركز إلى بؤرة القطع الزائد باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمتَي و في القاعدة.
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ارفع إلى القوة .
خطوة 5.3.2
ارفع إلى القوة .
خطوة 5.3.3
أضف و.
خطوة 5.3.4
أعِد كتابة بالصيغة .
خطوة 5.3.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6
أوجِد الرؤوس.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
يمكن إيجاد الرأس الأول لقطع زائد بجمع مع .
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.3
يمكن إيجاد الرأس الثاني لقطع زائد بطرح من .
خطوة 6.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.5
تتبع رؤوس القطع الزائد صيغة . القطوع الزائدة لها رأسان.
خطوة 7
أوجِد البؤر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
يمكن إيجاد البؤرة الأولى لقطع زائد بجمع مع .
خطوة 7.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.3
يمكن إيجاد البؤرة الثانية لقطع زائد بطرح من .
خطوة 7.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.5
تتبع بؤر القطع الزائد صيغة . القطوع الزائدة لها بؤرتان.
خطوة 8
أوجِد الاختلاف المركزي.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أوجِد الاختلاف المركزي باستخدام القاعدة التالية.
خطوة 8.2
عوّض بقيمتَي و في القاعدة.
خطوة 8.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
ارفع إلى القوة .
خطوة 8.3.2
ارفع إلى القوة .
خطوة 8.3.3
أضف و.
خطوة 8.3.4
أعِد كتابة بالصيغة .
خطوة 8.3.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 9
أوجِد المعلمة البؤرية.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أوجِد قيمة المعلمة البؤرية للقطع الزائد باستخدام القاعدة التالية.
خطوة 9.2
عوّض بقيمتَي و في القاعدة.
خطوة 9.3
ارفع إلى القوة .
خطوة 10
تتبع خطوط التقارب الصيغة لأن هذا القطع الزائد مفتوح على اليسار واليمين.
خطوة 11
بسّط لإيجاد خط التقارب الأول.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
احذِف الأقواس.
خطوة 11.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
اضرب في .
خطوة 11.2.1.2
طبّق خاصية التوزيع.
خطوة 11.2.1.3
اجمع و.
خطوة 11.2.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.4.1
اجمع و.
خطوة 11.2.1.4.2
اضرب في .
خطوة 11.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 11.2.3
اجمع و.
خطوة 11.2.4
اجمع البسوط على القاسم المشترك.
خطوة 11.2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.5.1
اضرب في .
خطوة 11.2.5.2
أضف و.
خطوة 12
بسّط لإيجاد خط التقارب الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
احذِف الأقواس.
خطوة 12.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.1
اضرب في .
خطوة 12.2.1.2
طبّق خاصية التوزيع.
خطوة 12.2.1.3
اجمع و.
خطوة 12.2.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.4.1
اضرب في .
خطوة 12.2.1.4.2
اجمع و.
خطوة 12.2.1.4.3
اضرب في .
خطوة 12.2.1.5
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.5.1
انقُل إلى يسار .
خطوة 12.2.1.5.2
انقُل السالب أمام الكسر.
خطوة 12.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 12.2.3
اجمع و.
خطوة 12.2.4
اجمع البسوط على القاسم المشترك.
خطوة 12.2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.5.1
اضرب في .
خطوة 12.2.5.2
أضف و.
خطوة 12.2.6
انقُل السالب أمام الكسر.
خطوة 13
يحتوي هذا القطع الزائد على خطي تقارب.
خطوة 14
هذه القيم تمثل القيم المهمة لتمثيل القطع الزائد بيانيًا وتحليله.
المركز:
الرؤوس:
البؤر:
الاختلاف المركزي:
المعلمة البؤرية:
خطوط التقارب: ،
خطوة 15