إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.2.1
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.1.2
أعِد كتابة العبارة.
خطوة 1.2.2
اقسِم على .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
احذِف الأقواس.
خطوة 2.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.1.2
اضرب في .
خطوة 3.2.1.3
انقُل إلى يسار .
خطوة 3.2.1.4
طبّق خاصية التوزيع.
خطوة 3.2.1.5
اضرب في .
خطوة 3.2.1.6
ألغِ العامل المشترك لـ .
خطوة 3.2.1.6.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.6.2
ألغِ العامل المشترك.
خطوة 3.2.1.6.3
أعِد كتابة العبارة.
خطوة 3.2.2
جمّع الحدود المتعاكسة في .
خطوة 3.2.2.1
أضف و.
خطوة 3.2.2.2
أضف و.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
بسّط العبارة.
خطوة 3.3.2.1
اضرب في .
خطوة 3.3.2.2
انقُل إلى يسار .
خطوة 4
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.1.1
اطرح من كلا المتعادلين.
خطوة 4.1.2
أضف إلى كلا المتعادلين.
خطوة 4.1.3
جمّع الحدود المتعاكسة في .
خطوة 4.1.3.1
اطرح من .
خطوة 4.1.3.2
أضف و.
خطوة 4.1.4
أضف و.
خطوة 4.2
أضف إلى كلا المتعادلين.
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.3.2.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
خطوة 4.3.3.1
اقسِم على .