إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
طبّق خاصية التوزيع.
خطوة 1.2
اضرب في .
خطوة 1.3
اضرب في .
خطوة 2
خطوة 2.1
استخدِم مبرهنة ذات الحدين.
خطوة 2.2
بسّط كل حد.
خطوة 2.2.1
طبّق قاعدة الضرب على .
خطوة 2.2.2
ارفع إلى القوة .
خطوة 2.2.3
طبّق قاعدة الضرب على .
خطوة 2.2.4
ارفع إلى القوة .
خطوة 2.2.5
اضرب في .
خطوة 2.2.6
اضرب في .
خطوة 2.2.7
اضرب في .
خطوة 2.2.8
ارفع إلى القوة .
خطوة 2.2.9
اضرب في .
خطوة 2.2.10
ارفع إلى القوة .
خطوة 2.3
اطرح من .
خطوة 2.4
أضف و.
خطوة 2.5
أعِد كتابة بصيغة محلّلة إلى عوامل.
خطوة 2.5.1
أخرِج العامل من .
خطوة 2.5.1.1
أخرِج العامل من .
خطوة 2.5.1.2
أخرِج العامل من .
خطوة 2.5.1.3
أخرِج العامل من .
خطوة 2.5.1.4
أخرِج العامل من .
خطوة 2.5.1.5
أخرِج العامل من .
خطوة 2.5.1.6
أخرِج العامل من .
خطوة 2.5.1.7
أخرِج العامل من .
خطوة 2.5.2
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 2.5.2.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2.5.2.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 2.5.2.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 2.5.2.3.1
عوّض بـ في متعدد الحدود.
خطوة 2.5.2.3.2
ارفع إلى القوة .
خطوة 2.5.2.3.3
اضرب في .
خطوة 2.5.2.3.4
ارفع إلى القوة .
خطوة 2.5.2.3.5
اضرب في .
خطوة 2.5.2.3.6
اطرح من .
خطوة 2.5.2.3.7
اضرب في .
خطوة 2.5.2.3.8
أضف و.
خطوة 2.5.2.3.9
اطرح من .
خطوة 2.5.2.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 2.5.2.5
اقسِم على .
خطوة 2.5.2.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | - | + | - |
خطوة 2.5.2.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | - | + | - |
خطوة 2.5.2.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | - | + | - | ||||||||
+ | - |
خطوة 2.5.2.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | - | + | - | ||||||||
- | + |
خطوة 2.5.2.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
خطوة 2.5.2.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
خطوة 2.5.2.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
خطوة 2.5.2.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
خطوة 2.5.2.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 2.5.2.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
خطوة 2.5.2.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 2.5.2.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 2.5.2.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 2.5.2.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 2.5.2.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
خطوة 2.5.2.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 2.5.2.6
اكتب في صورة مجموعة من العوامل.
خطوة 2.5.3
حلّل إلى عوامل.
خطوة 2.5.3.1
حلّل إلى عوامل بالتجميع.
خطوة 2.5.3.1.1
حلّل إلى عوامل بالتجميع.
خطوة 2.5.3.1.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 2.5.3.1.1.1.1
أخرِج العامل من .
خطوة 2.5.3.1.1.1.2
أعِد كتابة في صورة زائد
خطوة 2.5.3.1.1.1.3
طبّق خاصية التوزيع.
خطوة 2.5.3.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.5.3.1.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.5.3.1.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.5.3.1.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.5.3.1.2
احذِف الأقواس غير الضرورية.
خطوة 2.5.3.2
احذِف الأقواس غير الضرورية.
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أضف إلى كلا المتعادلين.
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
أضف إلى كلا المتعادلين.
خطوة 5.2.2
اقسِم كل حد في على وبسّط.
خطوة 5.2.2.1
اقسِم كل حد في على .
خطوة 5.2.2.2
بسّط الطرف الأيسر.
خطوة 5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.2.1.2
اقسِم على .
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أضف إلى كلا المتعادلين.
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: