ما قبل التفاضل والتكامل الأمثلة

Resolver para x اللوغاريتم الطبيعي للجذر التربيعي لـ x+2=3
خطوة 1
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3.3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
استخدِم لكتابة في صورة .
خطوة 3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.3.2.1.2
بسّط.
خطوة 3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.3.1.2
اضرب في .
خطوة 3.4
اطرح من كلا المتعادلين.
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: