إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2
خطوة 2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد قيمة في .
خطوة 2.2.1
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
خطوة 2.2.2
بسّط الطرف الأيمن.
خطوة 2.2.2.1
القيمة الدقيقة لـ هي .
خطوة 2.2.3
اقسِم كل حد في على وبسّط.
خطوة 2.2.3.1
اقسِم كل حد في على .
خطوة 2.2.3.2
بسّط الطرف الأيسر.
خطوة 2.2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.1.2
اقسِم على .
خطوة 2.2.3.3
بسّط الطرف الأيمن.
خطوة 2.2.3.3.1
اقسِم على .
خطوة 2.2.4
دالة المماس موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 2.2.5
أوجِد قيمة .
خطوة 2.2.5.1
أضف و.
خطوة 2.2.5.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.5.2.1
اقسِم كل حد في على .
خطوة 2.2.5.2.2
بسّط الطرف الأيسر.
خطوة 2.2.5.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.5.2.2.1.2
اقسِم على .
خطوة 2.2.6
أوجِد فترة .
خطوة 2.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
القيمة الدقيقة لـ هي .
خطوة 3.2.3
أضف إلى كلا المتعادلين.
خطوة 3.2.4
دالة المماس موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 3.2.5
أوجِد قيمة .
خطوة 3.2.5.1
أضف و.
خطوة 3.2.5.2
أضف إلى كلا المتعادلين.
خطوة 3.2.6
أوجِد فترة .
خطوة 3.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.6.4
اقسِم على .
خطوة 3.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 5
خطوة 5.1
ادمج و في .
، لأي عدد صحيح
خطوة 5.2
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح