ما قبل التفاضل والتكامل الأمثلة

Resolver para x sin(2x+pi/3)=( الجذر التربيعي لـ 3)/2
خطوة 1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
القيمة الدقيقة لـ هي .
خطوة 3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.3
اطرح من .
خطوة 3.4
اقسِم على .
خطوة 4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم على .
خطوة 5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.1.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.2.1
اجمع و.
خطوة 6.1.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.1.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.3.1
انقُل إلى يسار .
خطوة 6.1.3.2
اطرح من .
خطوة 6.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.2.3
اطرح من .
خطوة 6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.1
اضرب في .
خطوة 6.3.3.2.2
اضرب في .
خطوة 7
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.4.1
ألغِ العامل المشترك.
خطوة 7.4.2
اقسِم على .
خطوة 8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح