إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
حلّل الكسر إلى عوامل.
خطوة 1.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 1.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.3
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل من الرتبة الثانية، يلزم وجود من الحدود في بسط الكسر. ودائمًا ما يكون عدد الحدود اللازم في بسط الكسر مساويًا لرتبة العامل في القاسم.
خطوة 1.4
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.5
ألغِ العامل المشترك لـ .
خطوة 1.5.1
ألغِ العامل المشترك.
خطوة 1.5.2
أعِد كتابة العبارة.
خطوة 1.6
ألغِ العامل المشترك لـ .
خطوة 1.6.1
ألغِ العامل المشترك.
خطوة 1.6.2
اقسِم على .
خطوة 1.7
بسّط كل حد.
خطوة 1.7.1
ألغِ العامل المشترك لـ .
خطوة 1.7.1.1
ألغِ العامل المشترك.
خطوة 1.7.1.2
اقسِم على .
خطوة 1.7.2
طبّق خاصية التوزيع.
خطوة 1.7.3
انقُل إلى يسار .
خطوة 1.7.4
ألغِ العامل المشترك لـ .
خطوة 1.7.4.1
ألغِ العامل المشترك.
خطوة 1.7.4.2
اقسِم على .
خطوة 1.7.5
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.7.5.1
طبّق خاصية التوزيع.
خطوة 1.7.5.2
طبّق خاصية التوزيع.
خطوة 1.7.5.3
طبّق خاصية التوزيع.
خطوة 1.7.6
بسّط كل حد.
خطوة 1.7.6.1
اضرب في بجمع الأُسس.
خطوة 1.7.6.1.1
انقُل .
خطوة 1.7.6.1.2
اضرب في .
خطوة 1.7.6.2
انقُل إلى يسار .
خطوة 1.7.6.3
أعِد كتابة بالصيغة .
خطوة 1.7.6.4
انقُل إلى يسار .
خطوة 1.7.6.5
أعِد كتابة بالصيغة .
خطوة 1.8
بسّط العبارة.
خطوة 1.8.1
انقُل .
خطوة 1.8.2
انقُل .
خطوة 2
خطوة 2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.4
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 3
خطوة 3.1
أوجِد قيمة في .
خطوة 3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 3.1.2
اطرح من كلا المتعادلين.
خطوة 3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط كل حد.
خطوة 3.2.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2
اضرب في .
خطوة 3.2.2.1.3
اضرب في .
خطوة 3.2.2.1.4
أعِد كتابة بالصيغة .
خطوة 3.3
أعِد ترتيب و.
خطوة 3.4
أوجِد قيمة في .
خطوة 3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 3.4.2
اطرح من كلا المتعادلين.
خطوة 3.4.3
اقسِم كل حد في على وبسّط.
خطوة 3.4.3.1
اقسِم كل حد في على .
خطوة 3.4.3.2
بسّط الطرف الأيسر.
خطوة 3.4.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4.3.2.2
اقسِم على .
خطوة 3.4.3.3
بسّط الطرف الأيمن.
خطوة 3.4.3.3.1
بسّط كل حد.
خطوة 3.4.3.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.4.3.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.4.3.3.1.3
اقسِم على .
خطوة 3.5
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.5.2
بسّط الطرف الأيمن.
خطوة 3.5.2.1
بسّط .
خطوة 3.5.2.1.1
بسّط كل حد.
خطوة 3.5.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.5.2.1.1.2
اضرب في .
خطوة 3.5.2.1.1.3
اضرب في .
خطوة 3.5.2.1.2
جمّع الحدود المتعاكسة في .
خطوة 3.5.2.1.2.1
اطرح من .
خطوة 3.5.2.1.2.2
أضف و.
خطوة 3.5.3
استبدِل كافة حالات حدوث في بـ .
خطوة 3.5.4
بسّط الطرف الأيمن.
خطوة 3.5.4.1
بسّط كل حد.
خطوة 3.5.4.1.1
طبّق خاصية التوزيع.
خطوة 3.5.4.1.2
اضرب .
خطوة 3.5.4.1.2.1
اضرب في .
خطوة 3.5.4.1.2.2
اضرب في .
خطوة 3.5.4.1.3
اضرب في .
خطوة 3.6
أوجِد قيمة في .
خطوة 3.6.1
أعِد كتابة المعادلة في صورة .
خطوة 3.6.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.6.2.1
أضف إلى كلا المتعادلين.
خطوة 3.6.2.2
اطرح من كلا المتعادلين.
خطوة 3.6.2.3
أضف و.
خطوة 3.7
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.7.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.7.2
بسّط الطرف الأيمن.
خطوة 3.7.2.1
بسّط .
خطوة 3.7.2.1.1
بسّط كل حد.
خطوة 3.7.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.7.2.1.1.2
اضرب في .
خطوة 3.7.2.1.1.3
اضرب في .
خطوة 3.7.2.1.2
اطرح من .
خطوة 3.7.3
استبدِل كافة حالات حدوث في بـ .
خطوة 3.7.4
بسّط الطرف الأيمن.
خطوة 3.7.4.1
بسّط .
خطوة 3.7.4.1.1
بسّط كل حد.
خطوة 3.7.4.1.1.1
طبّق خاصية التوزيع.
خطوة 3.7.4.1.1.2
اضرب في .
خطوة 3.7.4.1.1.3
اضرب .
خطوة 3.7.4.1.1.3.1
اضرب في .
خطوة 3.7.4.1.1.3.2
اضرب في .
خطوة 3.7.4.1.2
أضف و.
خطوة 3.8
أوجِد قيمة في .
خطوة 3.8.1
أعِد كتابة المعادلة في صورة .
خطوة 3.8.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.8.2.1
اطرح من كلا المتعادلين.
خطوة 3.8.2.2
اطرح من .
خطوة 3.8.3
اقسِم كل حد في على وبسّط.
خطوة 3.8.3.1
اقسِم كل حد في على .
خطوة 3.8.3.2
بسّط الطرف الأيسر.
خطوة 3.8.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.8.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.8.3.2.1.2
اقسِم على .
خطوة 3.8.3.3
بسّط الطرف الأيمن.
خطوة 3.8.3.3.1
اقسِم على .
خطوة 3.9
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.9.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.9.2
بسّط الطرف الأيمن.
خطوة 3.9.2.1
أضف و.
خطوة 3.9.3
استبدِل كافة حالات حدوث في بـ .
خطوة 3.9.4
بسّط الطرف الأيمن.
خطوة 3.9.4.1
بسّط .
خطوة 3.9.4.1.1
اضرب في .
خطوة 3.9.4.1.2
أضف و.
خطوة 3.10
اسرِد جميع الحلول.
خطوة 4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و و.
خطوة 5
خطوة 5.1
احذِف الأقواس.
خطوة 5.2
اضرب في .
خطوة 5.3
اطرح من .