إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3
عوّض بالجذور الممكنة واحدًا تلو الآخر في متعدد الحدود لإيجاد الجذور الفعلية. وبسّط للتحقق مما إذا كانت القيمة تساوي ، وهو ما يعني أنها تمثل جذرًا.
خطوة 4
خطوة 4.1
بسّط كل حد.
خطوة 4.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2
اضرب في .
خطوة 4.1.3
اضرب في .
خطوة 4.2
بسّط عن طريق الجمع والطرح.
خطوة 4.2.1
أضف و.
خطوة 4.2.2
اطرح من .
خطوة 5
بما أن جذر معروف، اقسم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 6
خطوة 6.1
ضَع الأعداد التي تمثل المقسوم عليه والمقسوم في شكل يشبه القسمة.
خطوة 6.2
يُوضع العدد الأول في المقسوم في الموضع الأول من المساحة الناتجة (أسفل الخط الأفقي).
خطوة 6.3
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.4
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.5
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.6
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.7
تصبح جميع الأعداد ماعدا العدد الأخير معاملات خارج القسمة في متعدد الحدود. وتكون القيمة الأخيرة في خط النتيجة هي الباقي.
خطوة 6.8
بسّط ناتج قسمة متعدد الحدود.
خطوة 7
خطوة 7.1
اطرح من كلا المتعادلين.
خطوة 7.2
اقسِم كل حد في على وبسّط.
خطوة 7.2.1
اقسِم كل حد في على .
خطوة 7.2.2
بسّط الطرف الأيسر.
خطوة 7.2.2.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.1.2
اقسِم على .
خطوة 7.2.3
بسّط الطرف الأيمن.
خطوة 7.2.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 8
يمكن كتابة متعدد الحدود على هيئة مجموعة من العوامل الخطية.
خطوة 9
هذه هي جذور (أصفار) متعدد الحدود .
خطوة 10