إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3
عوّض بالجذور الممكنة واحدًا تلو الآخر في متعدد الحدود لإيجاد الجذور الفعلية. وبسّط للتحقق مما إذا كانت القيمة تساوي ، وهو ما يعني أنها تمثل جذرًا.
خطوة 4
خطوة 4.1
بسّط كل حد.
خطوة 4.1.1
طبّق قاعدة الضرب على .
خطوة 4.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.3
ارفع إلى القوة .
خطوة 4.1.4
ألغِ العامل المشترك لـ .
خطوة 4.1.4.1
أخرِج العامل من .
خطوة 4.1.4.2
ألغِ العامل المشترك.
خطوة 4.1.4.3
أعِد كتابة العبارة.
خطوة 4.1.5
طبّق قاعدة الضرب على .
خطوة 4.1.6
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.7
ارفع إلى القوة .
خطوة 4.1.8
اجمع و.
خطوة 4.1.9
انقُل السالب أمام الكسر.
خطوة 4.1.10
طبّق قاعدة الضرب على .
خطوة 4.1.11
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.12
ارفع إلى القوة .
خطوة 4.1.13
ألغِ العامل المشترك لـ .
خطوة 4.1.13.1
أخرِج العامل من .
خطوة 4.1.13.2
أخرِج العامل من .
خطوة 4.1.13.3
ألغِ العامل المشترك.
خطوة 4.1.13.4
أعِد كتابة العبارة.
خطوة 4.1.14
اجمع و.
خطوة 4.1.15
ألغِ العامل المشترك لـ .
خطوة 4.1.15.1
أخرِج العامل من .
خطوة 4.1.15.2
ألغِ العامل المشترك.
خطوة 4.1.15.3
أعِد كتابة العبارة.
خطوة 4.2
اجمع الكسور.
خطوة 4.2.1
اجمع البسوط على القاسم المشترك.
خطوة 4.2.2
اطرح من .
خطوة 4.3
أوجِد القاسم المشترك.
خطوة 4.3.1
اكتب على هيئة كسر قاسمه .
خطوة 4.3.2
اضرب في .
خطوة 4.3.3
اضرب في .
خطوة 4.3.4
اكتب على هيئة كسر قاسمه .
خطوة 4.3.5
اضرب في .
خطوة 4.3.6
اضرب في .
خطوة 4.3.7
اضرب في .
خطوة 4.3.8
اضرب في .
خطوة 4.3.9
اضرب في .
خطوة 4.4
اجمع البسوط على القاسم المشترك.
خطوة 4.5
بسّط كل حد.
خطوة 4.5.1
اضرب في .
خطوة 4.5.2
اضرب في .
خطوة 4.5.3
اضرب في .
خطوة 4.6
بسّط العبارة.
خطوة 4.6.1
اطرح من .
خطوة 4.6.2
اطرح من .
خطوة 4.6.3
أضف و.
خطوة 4.6.4
اقسِم على .
خطوة 5
بما أن جذر معروف، اقسم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 6
خطوة 6.1
ضَع الأعداد التي تمثل المقسوم عليه والمقسوم في شكل يشبه القسمة.
خطوة 6.2
يُوضع العدد الأول في المقسوم في الموضع الأول من المساحة الناتجة (أسفل الخط الأفقي).
خطوة 6.3
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.4
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.5
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.6
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.7
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.8
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.9
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.10
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.11
تصبح جميع الأعداد ماعدا العدد الأخير معاملات خارج القسمة في متعدد الحدود. وتكون القيمة الأخيرة في خط النتيجة هي الباقي.
خطوة 6.12
بسّط ناتج قسمة متعدد الحدود.
خطوة 7
خطوة 7.1
أخرِج العامل من .
خطوة 7.2
أخرِج العامل من .
خطوة 7.3
أخرِج العامل من .
خطوة 7.4
أخرِج العامل من .
خطوة 7.5
أخرِج العامل من .
خطوة 8
خطوة 8.1
أعِد تجميع الحدود.
خطوة 8.2
أخرِج العامل من .
خطوة 8.2.1
أخرِج العامل من .
خطوة 8.2.2
أخرِج العامل من .
خطوة 8.2.3
أخرِج العامل من .
خطوة 8.3
أخرِج العامل من .
خطوة 8.3.1
أخرِج العامل من .
خطوة 8.3.2
أخرِج العامل من .
خطوة 8.3.3
أخرِج العامل من .
خطوة 8.3.4
أخرِج العامل من .
خطوة 8.3.5
أخرِج العامل من .
خطوة 8.4
حلّل إلى عوامل.
خطوة 8.4.1
حلّل إلى عوامل بالتجميع.
خطوة 8.4.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 8.4.1.1.1
أخرِج العامل من .
خطوة 8.4.1.1.2
أعِد كتابة في صورة زائد
خطوة 8.4.1.1.3
طبّق خاصية التوزيع.
خطوة 8.4.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 8.4.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 8.4.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 8.4.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 8.4.2
احذِف الأقواس غير الضرورية.
خطوة 8.5
أخرِج العامل من .
خطوة 8.5.1
أخرِج العامل من .
خطوة 8.5.2
أخرِج العامل من .
خطوة 8.5.3
أخرِج العامل من .
خطوة 8.6
طبّق خاصية التوزيع.
خطوة 8.7
اضرب في بجمع الأُسس.
خطوة 8.7.1
اضرب في .
خطوة 8.7.1.1
ارفع إلى القوة .
خطوة 8.7.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 8.7.2
أضف و.
خطوة 8.8
انقُل إلى يسار .
خطوة 8.9
أعِد ترتيب الحدود.
خطوة 8.10
حلّل إلى عوامل.
خطوة 8.10.1
أعِد كتابة بصيغة محلّلة إلى عوامل.
خطوة 8.10.1.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 8.10.1.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 8.10.1.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 8.10.1.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 8.10.1.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 8.10.1.1.3.2
ارفع إلى القوة .
خطوة 8.10.1.1.3.3
ارفع إلى القوة .
خطوة 8.10.1.1.3.4
اضرب في .
خطوة 8.10.1.1.3.5
اطرح من .
خطوة 8.10.1.1.3.6
أضف و.
خطوة 8.10.1.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 8.10.1.1.5
اقسِم على .
خطوة 8.10.1.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | - | + | + |
خطوة 8.10.1.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | - | + | + |
خطوة 8.10.1.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | - | + | + | ||||||||
+ | + |
خطوة 8.10.1.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | - | + | + | ||||||||
- | - |
خطوة 8.10.1.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
خطوة 8.10.1.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
خطوة 8.10.1.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
خطوة 8.10.1.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
خطوة 8.10.1.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
خطوة 8.10.1.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
خطوة 8.10.1.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
خطوة 8.10.1.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
خطوة 8.10.1.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
خطوة 8.10.1.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
خطوة 8.10.1.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
خطوة 8.10.1.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 8.10.1.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 8.10.1.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 8.10.1.2.1
أعِد كتابة بالصيغة .
خطوة 8.10.1.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 8.10.1.2.3
أعِد كتابة متعدد الحدود.
خطوة 8.10.1.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 8.10.2
احذِف الأقواس غير الضرورية.
خطوة 9
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 10
خطوة 10.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 10.2
أوجِد قيمة في .
خطوة 10.2.1
أضف إلى كلا المتعادلين.
خطوة 10.2.2
اقسِم كل حد في على وبسّط.
خطوة 10.2.2.1
اقسِم كل حد في على .
خطوة 10.2.2.2
بسّط الطرف الأيسر.
خطوة 10.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 10.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 10.2.2.2.1.2
اقسِم على .
خطوة 11
خطوة 11.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 11.2
اطرح من كلا المتعادلين.
خطوة 12
خطوة 12.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 12.2
أوجِد قيمة في .
خطوة 12.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 12.2.2
أضف إلى كلا المتعادلين.
خطوة 13
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 14