إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3
عوّض بالجذور الممكنة واحدًا تلو الآخر في متعدد الحدود لإيجاد الجذور الفعلية. وبسّط للتحقق مما إذا كانت القيمة تساوي ، وهو ما يعني أنها تمثل جذرًا.
خطوة 4
خطوة 4.1
بسّط كل حد.
خطوة 4.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.3
اضرب في .
خطوة 4.2
أضف و.
خطوة 5
بما أن جذر معروف، اقسم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 6
خطوة 6.1
ضَع الأعداد التي تمثل المقسوم عليه والمقسوم في شكل يشبه القسمة.
خطوة 6.2
يُوضع العدد الأول في المقسوم في الموضع الأول من المساحة الناتجة (أسفل الخط الأفقي).
خطوة 6.3
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.4
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.5
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.6
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.7
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.8
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.9
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
خطوة 6.10
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
خطوة 6.11
تصبح جميع الأعداد ماعدا العدد الأخير معاملات خارج القسمة في متعدد الحدود. وتكون القيمة الأخيرة في خط النتيجة هي الباقي.
خطوة 6.12
بسّط ناتج قسمة متعدد الحدود.
خطوة 7
خطوة 7.1
أخرِج العامل من .
خطوة 7.2
أخرِج العامل من .
خطوة 7.3
أخرِج العامل من .
خطوة 8
أعِد كتابة بالصيغة .
خطوة 9
خطوة 9.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 9.2
احذِف الأقواس غير الضرورية.
خطوة 10
خطوة 10.1
أعِد كتابة بالصيغة .
خطوة 10.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 10.3
أخرِج العامل من .
خطوة 10.3.1
أخرِج العامل من .
خطوة 10.3.2
أخرِج العامل من .
خطوة 10.3.3
أخرِج العامل من .
خطوة 10.4
استبدِل كافة حالات حدوث بـ .
خطوة 11
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 12
خطوة 12.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 12.2
أوجِد قيمة في .
خطوة 12.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 12.2.2
بسّط .
خطوة 12.2.2.1
أعِد كتابة بالصيغة .
خطوة 12.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 12.2.2.3
زائد أو ناقص يساوي .
خطوة 13
خطوة 13.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 13.2
أوجِد قيمة في .
خطوة 13.2.1
أضف إلى كلا المتعادلين.
خطوة 13.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 13.2.3
بسّط .
خطوة 13.2.3.1
أعِد كتابة بالصيغة .
خطوة 13.2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 13.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 13.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 13.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 13.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 14
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 15