ما قبل التفاضل والتكامل الأمثلة

حل بالتعويض x-y=1 , x^2-xy-y^2=-29
,
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.1
اضرب في .
خطوة 2.2.1.1.3.1.2
اضرب في .
خطوة 2.2.1.1.3.1.3
اضرب في .
خطوة 2.2.1.1.3.1.4
اضرب في .
خطوة 2.2.1.1.3.2
أضف و.
خطوة 2.2.1.1.4
طبّق خاصية التوزيع.
خطوة 2.2.1.1.5
اضرب في .
خطوة 2.2.1.1.6
طبّق خاصية التوزيع.
خطوة 2.2.1.1.7
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.8
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.8.1
انقُل .
خطوة 2.2.1.1.8.2
اضرب في .
خطوة 2.2.1.2
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1.1
اطرح من .
خطوة 2.2.1.2.1.2
أضف و.
خطوة 2.2.1.2.2
اطرح من .
خطوة 3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أضف إلى كلا المتعادلين.
خطوة 3.2
أضف و.
خطوة 3.3
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أعِد ترتيب و.
خطوة 3.3.1.2
أخرِج العامل من .
خطوة 3.3.1.3
أخرِج العامل من .
خطوة 3.3.1.4
أعِد كتابة بالصيغة .
خطوة 3.3.1.5
أخرِج العامل من .
خطوة 3.3.1.6
أخرِج العامل من .
خطوة 3.3.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.3.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.3.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
أضف إلى كلا المتعادلين.
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
اطرح من كلا المتعادلين.
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
احذِف الأقواس.
خطوة 4.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أضف و.
خطوة 5
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
احذِف الأقواس.
خطوة 5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اطرح من .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8