إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
اقسِم كل حد في على .
خطوة 1.2
بسّط الطرف الأيسر.
خطوة 1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.1.2
اقسِم على .
خطوة 2
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
اضرب .
خطوة 2.2.1.1
اجمع و.
خطوة 2.2.1.2
اضرب في .
خطوة 3
خطوة 3.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 3.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.1.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
y
y
خطوة 3.2
اضرب كل حد في في لحذف الكسور.
خطوة 3.2.1
اضرب كل حد في في .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
بسّط كل حد.
خطوة 3.2.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.2.1.2
اضرب في بجمع الأُسس.
خطوة 3.2.2.1.2.1
انقُل .
خطوة 3.2.2.1.2.2
اضرب في .
خطوة 3.3
أوجِد حل المعادلة.
خطوة 3.3.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.3.2.1
أخرِج العامل من .
خطوة 3.3.2.1.1
انقُل .
خطوة 3.3.2.1.2
أخرِج العامل من .
خطوة 3.3.2.1.3
أخرِج العامل من .
خطوة 3.3.2.1.4
أعِد كتابة بالصيغة .
خطوة 3.3.2.1.5
أخرِج العامل من .
خطوة 3.3.2.1.6
أخرِج العامل من .
خطوة 3.3.2.2
حلّل إلى عوامل.
خطوة 3.3.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 3.3.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.3.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.3.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.3.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.4.2
أضف إلى كلا المتعادلين.
خطوة 3.3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.5.2
اطرح من كلا المتعادلين.
خطوة 3.3.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
خطوة 4.2.1
اقسِم على .
خطوة 5
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط الطرف الأيمن.
خطوة 5.2.1
اقسِم على .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8