ما قبل التفاضل والتكامل الأمثلة

,
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.1
اضرب في .
خطوة 2.2.1.1.3.1.2
اضرب في .
خطوة 2.2.1.1.3.1.3
اضرب في .
خطوة 2.2.1.1.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.1.3.1.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.5.1
انقُل .
خطوة 2.2.1.1.3.1.5.2
اضرب في .
خطوة 2.2.1.1.3.1.6
اضرب في .
خطوة 2.2.1.1.3.1.7
اضرب في .
خطوة 2.2.1.1.3.2
اطرح من .
خطوة 2.2.1.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1
اطرح من .
خطوة 2.2.1.2.2
أضف و.
خطوة 3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
اطرح من .
خطوة 3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اقسِم كل حد في على .
خطوة 3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
اقسِم على .
خطوة 4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
اضرب في .
خطوة 4.2.1.2
اطرح من .
خطوة 5
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 7