إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
,
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط .
خطوة 2.2.1.1
بسّط كل حد.
خطوة 2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.1.3.1
بسّط كل حد.
خطوة 2.2.1.1.3.1.1
اضرب في .
خطوة 2.2.1.1.3.1.2
اضرب في .
خطوة 2.2.1.1.3.1.3
اضرب في .
خطوة 2.2.1.1.3.1.4
اضرب في .
خطوة 2.2.1.1.3.2
أضف و.
خطوة 2.2.1.2
جمّع الحدود المتعاكسة في .
خطوة 2.2.1.2.1
اطرح من .
خطوة 2.2.1.2.2
أضف و.
خطوة 3
خطوة 3.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
اطرح من .
خطوة 3.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.1
اقسِم كل حد في على .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
اقسِم على .
خطوة 4
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط .
خطوة 4.2.1
بسّط الطرف الأيسر.
خطوة 4.2.1.1
احذِف الأقواس.
خطوة 4.2.2
بسّط الطرف الأيمن.
خطوة 4.2.2.1
أضف و.
خطوة 5
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 7