إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
,
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط .
خطوة 2.2.1.1
بسّط كل حد.
خطوة 2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.1.3.1
بسّط كل حد.
خطوة 2.2.1.1.3.1.1
اضرب في .
خطوة 2.2.1.1.3.1.2
اضرب في .
خطوة 2.2.1.1.3.1.3
اضرب في .
خطوة 2.2.1.1.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.1.3.1.5
اضرب في بجمع الأُسس.
خطوة 2.2.1.1.3.1.5.1
انقُل .
خطوة 2.2.1.1.3.1.5.2
اضرب في .
خطوة 2.2.1.1.3.1.6
اضرب في .
خطوة 2.2.1.1.3.1.7
اضرب في .
خطوة 2.2.1.1.3.2
اطرح من .
خطوة 2.2.1.2
أضف و.
خطوة 3
خطوة 3.1
انقُل كل الحدود إلى المتعادل الأيسر وبسّط.
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
اطرح من .
خطوة 3.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.4
بسّط.
خطوة 3.4.1
بسّط بَسْط الكسر.
خطوة 3.4.1.1
ارفع إلى القوة .
خطوة 3.4.1.2
اضرب .
خطوة 3.4.1.2.1
اضرب في .
خطوة 3.4.1.2.2
اضرب في .
خطوة 3.4.1.3
أضف و.
خطوة 3.4.1.4
أعِد كتابة بالصيغة .
خطوة 3.4.1.4.1
أخرِج العامل من .
خطوة 3.4.1.4.2
أعِد كتابة بالصيغة .
خطوة 3.4.1.5
أخرِج الحدود من تحت الجذر.
خطوة 3.4.2
اضرب في .
خطوة 3.4.3
بسّط .
خطوة 3.5
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.5.1
بسّط بَسْط الكسر.
خطوة 3.5.1.1
ارفع إلى القوة .
خطوة 3.5.1.2
اضرب .
خطوة 3.5.1.2.1
اضرب في .
خطوة 3.5.1.2.2
اضرب في .
خطوة 3.5.1.3
أضف و.
خطوة 3.5.1.4
أعِد كتابة بالصيغة .
خطوة 3.5.1.4.1
أخرِج العامل من .
خطوة 3.5.1.4.2
أعِد كتابة بالصيغة .
خطوة 3.5.1.5
أخرِج الحدود من تحت الجذر.
خطوة 3.5.2
اضرب في .
خطوة 3.5.3
بسّط .
خطوة 3.5.4
غيّر إلى .
خطوة 3.6
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.6.1
بسّط بَسْط الكسر.
خطوة 3.6.1.1
ارفع إلى القوة .
خطوة 3.6.1.2
اضرب .
خطوة 3.6.1.2.1
اضرب في .
خطوة 3.6.1.2.2
اضرب في .
خطوة 3.6.1.3
أضف و.
خطوة 3.6.1.4
أعِد كتابة بالصيغة .
خطوة 3.6.1.4.1
أخرِج العامل من .
خطوة 3.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 3.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 3.6.2
اضرب في .
خطوة 3.6.3
بسّط .
خطوة 3.6.4
غيّر إلى .
خطوة 3.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
خطوة 4.2.1
بسّط .
خطوة 4.2.1.1
بسّط العبارة.
خطوة 4.2.1.1.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 4.2.1.1.2
اجمع البسوط على القاسم المشترك.
خطوة 4.2.1.2
بسّط بَسْط الكسر.
خطوة 4.2.1.2.1
طبّق خاصية التوزيع.
خطوة 4.2.1.2.2
اضرب في .
خطوة 4.2.1.2.3
اطرح من .
خطوة 5
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط الطرف الأيمن.
خطوة 5.2.1
بسّط .
خطوة 5.2.1.1
بسّط العبارة.
خطوة 5.2.1.1.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 5.2.1.1.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.1.2
بسّط بَسْط الكسر.
خطوة 5.2.1.2.1
طبّق خاصية التوزيع.
خطوة 5.2.1.2.2
اضرب في .
خطوة 5.2.1.2.3
اضرب .
خطوة 5.2.1.2.3.1
اضرب في .
خطوة 5.2.1.2.3.2
اضرب في .
خطوة 5.2.1.2.4
اطرح من .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8