إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
اطرح من كلا المتعادلين.
خطوة 2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط .
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
اضرب الأُسس في .
خطوة 3.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.3.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
بسّط.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط .
خطوة 3.3.1.1
أعِد كتابة بالصيغة .
خطوة 3.3.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.3.1.2.1
طبّق خاصية التوزيع.
خطوة 3.3.1.2.2
طبّق خاصية التوزيع.
خطوة 3.3.1.2.3
طبّق خاصية التوزيع.
خطوة 3.3.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 3.3.1.3.1
بسّط كل حد.
خطوة 3.3.1.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.1.3.1.2
اضرب في بجمع الأُسس.
خطوة 3.3.1.3.1.2.1
انقُل .
خطوة 3.3.1.3.1.2.2
اضرب في .
خطوة 3.3.1.3.1.3
اضرب في .
خطوة 3.3.1.3.1.4
اضرب في .
خطوة 3.3.1.3.1.5
اضرب في .
خطوة 3.3.1.3.1.6
اضرب في .
خطوة 3.3.1.3.1.7
اضرب في .
خطوة 3.3.1.3.2
أضف و.
خطوة 4
خطوة 4.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 4.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اطرح من .
خطوة 4.3
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 4.3.1
أعِد كتابة بالصيغة .
خطوة 4.3.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 4.3.3
أعِد كتابة متعدد الحدود.
خطوة 4.3.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5
أضف إلى كلا المتعادلين.