ما قبل التفاضل والتكامل الأمثلة

Resolver para x لوغاريتم x+6+ للأساس 9 لوغاريتم x+3=2 للأساس 9
خطوة 1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.3
طبّق خاصية التوزيع.
خطوة 1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
اضرب في .
خطوة 1.3.1.2
انقُل إلى يسار .
خطوة 1.3.1.3
اضرب في .
خطوة 1.3.2
أضف و.
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
ارفع إلى القوة .
خطوة 3.3
انقُل كل الحدود إلى المتعادل الأيسر وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اطرح من كلا المتعادلين.
خطوة 3.3.2
اطرح من .
خطوة 3.4
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.5
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1.1
ارفع إلى القوة .
خطوة 3.6.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1.2.1
اضرب في .
خطوة 3.6.1.2.2
اضرب في .
خطوة 3.6.1.3
أضف و.
خطوة 3.6.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1.4.1
أخرِج العامل من .
خطوة 3.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 3.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 3.6.2
اضرب في .
خطوة 3.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: