ما قبل التفاضل والتكامل الأمثلة

الرسم البياني 4x^2-y^2-16x-6y-9=0
خطوة 1
أوجِد الصيغة القياسية للقطع الزائد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أضف إلى كلا المتعادلين.
خطوة 1.2
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.2.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2.2.4
اقسِم على .
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1
ارفع إلى القوة .
خطوة 1.2.4.2.1.2
اضرب في .
خطوة 1.2.4.2.1.3
اقسِم على .
خطوة 1.2.4.2.1.4
اضرب في .
خطوة 1.2.4.2.2
اطرح من .
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
استبدِل بـ في المعادلة .
خطوة 1.4
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.5
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.5.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.5.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.5.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2
انقُل العدد سالب واحد من قاسم .
خطوة 1.5.3.2.2
أعِد كتابة بالصيغة .
خطوة 1.5.3.2.3
اضرب في .
خطوة 1.5.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.5.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.4.2.1.1
ارفع إلى القوة .
خطوة 1.5.4.2.1.2
اضرب في .
خطوة 1.5.4.2.1.3
اقسِم على .
خطوة 1.5.4.2.1.4
اضرب في .
خطوة 1.5.4.2.2
أضف و.
خطوة 1.5.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.6
استبدِل بـ في المعادلة .
خطوة 1.7
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.8
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1
أضف و.
خطوة 1.8.2
اطرح من .
خطوة 1.9
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 1.10
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الزائد. استخدِم هذه الصيغة لتحديد القيم المُستخدمة لإيجاد رؤوس القطع الزائد وخطوط تقاربه.
خطوة 3
طابِق القيم الموجودة في هذا القطع الزائد بقيم الصيغة القياسية. يمثل المتغير الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل، .
خطوة 4
يتبع مركز القطع الزائد الصيغة . عوّض بقيمتَي و.
خطوة 5
أوجِد ، المسافة من المركز إلى بؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المسافة من المركز إلى بؤرة القطع الزائد باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمتَي و في القاعدة.
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ارفع إلى القوة .
خطوة 5.3.2
ارفع إلى القوة .
خطوة 5.3.3
أضف و.
خطوة 5.3.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.4.1
أخرِج العامل من .
خطوة 5.3.4.2
أعِد كتابة بالصيغة .
خطوة 5.3.5
أخرِج الحدود من تحت الجذر.
خطوة 6
أوجِد الرؤوس.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
يمكن إيجاد الرأس الأول لقطع زائد بجمع مع .
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.3
يمكن إيجاد الرأس الثاني لقطع زائد بطرح من .
خطوة 6.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 6.5
تتبع رؤوس القطع الزائد صيغة . القطوع الزائدة لها رأسان.
خطوة 7
أوجِد البؤر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
يمكن إيجاد البؤرة الأولى لقطع زائد بجمع مع .
خطوة 7.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.3
يمكن إيجاد البؤرة الثانية لقطع زائد بطرح من .
خطوة 7.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7.5
تتبع بؤر القطع الزائد صيغة . القطوع الزائدة لها بؤرتان.
خطوة 8
أوجِد الاختلاف المركزي.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أوجِد الاختلاف المركزي باستخدام القاعدة التالية.
خطوة 8.2
عوّض بقيمتَي و في القاعدة.
خطوة 8.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1.1
ارفع إلى القوة .
خطوة 8.3.1.2
ارفع إلى القوة .
خطوة 8.3.1.3
أضف و.
خطوة 8.3.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1.4.1
أخرِج العامل من .
خطوة 8.3.1.4.2
أعِد كتابة بالصيغة .
خطوة 8.3.1.5
أخرِج الحدود من تحت الجذر.
خطوة 8.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.2.1
ألغِ العامل المشترك.
خطوة 8.3.2.2
اقسِم على .
خطوة 9
أوجِد المعلمة البؤرية.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أوجِد قيمة المعلمة البؤرية للقطع الزائد باستخدام القاعدة التالية.
خطوة 9.2
عوّض بقيمتَي و في القاعدة.
خطوة 9.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
ارفع إلى القوة .
خطوة 9.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.2.1
أخرِج العامل من .
خطوة 9.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.2.2.1
أخرِج العامل من .
خطوة 9.3.2.2.2
ألغِ العامل المشترك.
خطوة 9.3.2.2.3
أعِد كتابة العبارة.
خطوة 9.3.3
اضرب في .
خطوة 9.3.4
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.4.1
اضرب في .
خطوة 9.3.4.2
ارفع إلى القوة .
خطوة 9.3.4.3
ارفع إلى القوة .
خطوة 9.3.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 9.3.4.5
أضف و.
خطوة 9.3.4.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.4.6.1
استخدِم لكتابة في صورة .
خطوة 9.3.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 9.3.4.6.3
اجمع و.
خطوة 9.3.4.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.4.6.4.1
ألغِ العامل المشترك.
خطوة 9.3.4.6.4.2
أعِد كتابة العبارة.
خطوة 9.3.4.6.5
احسِب قيمة الأُس.
خطوة 10
تتبع خطوط التقارب الصيغة لأن هذا القطع الزائد مفتوح على اليسار واليمين.
خطوة 11
بسّط لإيجاد خط التقارب الأول.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
احذِف الأقواس.
خطوة 11.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
اضرب في .
خطوة 11.2.1.2
طبّق خاصية التوزيع.
خطوة 11.2.1.3
اضرب في .
خطوة 11.2.2
اطرح من .
خطوة 12
بسّط لإيجاد خط التقارب الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
احذِف الأقواس.
خطوة 12.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.2.1.1
اضرب في .
خطوة 12.2.1.2
طبّق خاصية التوزيع.
خطوة 12.2.1.3
اضرب في .
خطوة 12.2.2
اطرح من .
خطوة 13
يحتوي هذا القطع الزائد على خطي تقارب.
خطوة 14
هذه القيم تمثل القيم المهمة لتمثيل القطع الزائد بيانيًا وتحليله.
المركز:
الرؤوس:
البؤر:
الاختلاف المركزي:
المعلمة البؤرية:
خطوط التقارب: ،
خطوة 15