ما قبل التفاضل والتكامل الأمثلة

خطوة 1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اقسِم كل حد في على .
خطوة 1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.1.2
اقسِم على .
خطوة 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة بالصيغة .
خطوة 3.2
أي جذر لـ هو .
خطوة 3.3
اضرب في .
خطوة 3.4
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
اضرب في .
خطوة 3.4.2
ارفع إلى القوة .
خطوة 3.4.3
ارفع إلى القوة .
خطوة 3.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.5
أضف و.
خطوة 3.4.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.1
استخدِم لكتابة في صورة .
خطوة 3.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.6.3
اجمع و.
خطوة 3.4.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.4.1
ألغِ العامل المشترك.
خطوة 3.4.6.4.2
أعِد كتابة العبارة.
خطوة 3.4.6.5
احسِب قيمة الأُس.
خطوة 4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 6
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
القيمة الدقيقة لـ هي .
خطوة 6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.1
اضرب في .
خطوة 6.3.3.2.2
اضرب في .
خطوة 6.4
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.5.1.2
اجمع و.
خطوة 6.5.1.3
اجمع البسوط على القاسم المشترك.
خطوة 6.5.1.4
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1.4.1
أعِد ترتيب و.
خطوة 6.5.1.4.2
اطرح من .
خطوة 6.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
اقسِم كل حد في على .
خطوة 6.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.5.2.2.1.2
اقسِم على .
خطوة 6.5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.5.2.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.3.2.1
اضرب في .
خطوة 6.5.2.3.2.2
اضرب في .
خطوة 6.6
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 6.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.6.4.1
ألغِ العامل المشترك.
خطوة 6.6.4.2
اقسِم على .
خطوة 6.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 7.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
القيمة الدقيقة لـ هي .
خطوة 7.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
اقسِم كل حد في على .
خطوة 7.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.1.1
ألغِ العامل المشترك.
خطوة 7.3.2.1.2
اقسِم على .
خطوة 7.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 7.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.3.2.1
اضرب في .
خطوة 7.3.3.2.2
اضرب في .
خطوة 7.4
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 7.5
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.1
اطرح من .
خطوة 7.5.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 7.5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.3.1
اقسِم كل حد في على .
خطوة 7.5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.5.3.2.1.1
ألغِ العامل المشترك.
خطوة 7.5.3.2.1.2
اقسِم على .
خطوة 7.5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 7.5.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 7.5.3.3.2.1
اضرب في .
خطوة 7.5.3.3.2.2
اضرب في .
خطوة 7.6
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 7.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.6.4.1
ألغِ العامل المشترك.
خطوة 7.6.4.2
اقسِم على .
خطوة 7.7
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 7.7.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 7.7.3
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.3.1
اجمع و.
خطوة 7.7.3.2
اجمع البسوط على القاسم المشترك.
خطوة 7.7.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.7.4.1
انقُل إلى يسار .
خطوة 7.7.4.2
اطرح من .
خطوة 7.7.5
اسرِد الزوايا الجديدة.
خطوة 7.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 8
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 9
وحّد الإجابات.
، لأي عدد صحيح