إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
تتمثل خطوات إيجاد المضاعف المشترك الأصغر لـ فيما يلي:
1. أوجِد المضاعف المشترك الأصغر للجزء الرقمي .
2. أوجِد المضاعف المشترك الأصغر للجزء المتغير .
3. أوجِد المضاعف المشترك الأصغر للجزء المتغير المركب .
4. اضرب كل مضاعف مشترك أصغر معًا.
خطوة 1.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.6
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 1.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 1.8
اضرب في .
خطوة 1.9
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.10
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 1.11
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط كل حد.
خطوة 2.2.1.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1.1
أخرِج العامل من .
خطوة 2.2.1.1.2
ألغِ العامل المشترك.
خطوة 2.2.1.1.3
أعِد كتابة العبارة.
خطوة 2.2.1.2
ألغِ العامل المشترك لـ .
خطوة 2.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.2.1.2.2
ألغِ العامل المشترك.
خطوة 2.2.1.2.3
أعِد كتابة العبارة.
خطوة 2.2.1.3
طبّق خاصية التوزيع.
خطوة 2.2.1.4
اضرب في .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
طبّق خاصية التوزيع.
خطوة 2.3.2
اضرب في بجمع الأُسس.
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.1.1
ارفع إلى القوة .
خطوة 2.3.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.2.2
أضف و.
خطوة 2.3.3
انقُل إلى يسار .
خطوة 2.3.4
أعِد كتابة بالصيغة .
خطوة 2.3.5
اضرب في .
خطوة 3
خطوة 3.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.3
بسّط.
خطوة 3.3.1
بسّط بَسْط الكسر.
خطوة 3.3.1.1
ارفع إلى القوة .
خطوة 3.3.1.2
اضرب .
خطوة 3.3.1.2.1
اضرب في .
خطوة 3.3.1.2.2
اضرب في .
خطوة 3.3.1.3
اطرح من .
خطوة 3.3.1.4
أعِد كتابة بالصيغة .
خطوة 3.3.1.5
أعِد كتابة بالصيغة .
خطوة 3.3.1.6
أعِد كتابة بالصيغة .
خطوة 3.3.1.7
أعِد كتابة بالصيغة .
خطوة 3.3.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.1.9
انقُل إلى يسار .
خطوة 3.3.2
اضرب في .
خطوة 3.3.3
بسّط .
خطوة 3.4
الإجابة النهائية هي تركيبة من كلا الحلّين.