ما قبل التفاضل والتكامل الأمثلة

خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
بسّط المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 2.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
اجمع و.
خطوة 2.1.2.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1.1
ارفع إلى القوة .
خطوة 2.1.2.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.2.2
أضف و.
خطوة 2.1.3
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 2.1.4
اجمع و.
خطوة 2.1.5
انقُل السالب أمام الكسر.
خطوة 2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
افصِل الكسور.
خطوة 2.2.3
حوّل من إلى .
خطوة 2.2.4
اقسِم على .
خطوة 2.2.5
افصِل الكسور.
خطوة 2.2.6
حوّل من إلى .
خطوة 2.2.7
اقسِم على .
خطوة 2.2.8
اضرب في .
خطوة 3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أخرِج العامل من .
خطوة 3.2
أخرِج العامل من .
خطوة 3.3
أخرِج العامل من .
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
خُذ ظل التمام العكسي لكلا المتعادلين لاستخراج من داخل ظل التمام.
خطوة 5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
القيمة الدقيقة لـ هي .
خطوة 5.2.3
دالة ظل التمام موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5.2.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.4.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.2.1
اجمع و.
خطوة 5.2.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.4.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.3.1
انقُل إلى يسار .
خطوة 5.2.4.3.2
أضف و.
خطوة 5.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.5.4
اقسِم على .
خطوة 5.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
أضف إلى كلا المتعادلين.
خطوة 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 6.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.2.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.2.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6.2.4
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 6.2.5
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.5.1
مدى جيب التمام هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 6.2.6
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.6.1
مدى جيب التمام هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 8
وحّد الإجابات.
، لأي عدد صحيح