إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة معادلة.
خطوة 2
بادِل المتغيرات.
خطوة 3
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3.3
بسّط كل متعادل.
خطوة 3.3.1
استخدِم لكتابة في صورة .
خطوة 3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.2.1
بسّط .
خطوة 3.3.2.1.1
اضرب الأُسس في .
خطوة 3.3.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.3.2.1.2
بسّط.
خطوة 3.4
أوجِد قيمة .
خطوة 3.4.1
اطرح من كلا المتعادلين.
خطوة 3.4.2
اقسِم كل حد في على وبسّط.
خطوة 3.4.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2
بسّط الطرف الأيسر.
خطوة 3.4.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4.2.2.2
اقسِم على .
خطوة 3.4.2.3
بسّط الطرف الأيمن.
خطوة 3.4.2.3.1
بسّط كل حد.
خطوة 3.4.2.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.4.2.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.4.2.3.1.3
اقسِم على .
خطوة 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.4.4
بسّط .
خطوة 3.4.4.1
بسّط العبارة.
خطوة 3.4.4.1.1
أعِد كتابة بالصيغة .
خطوة 3.4.4.1.2
أعِد ترتيب و.
خطوة 3.4.4.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.4.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
Replace with to show the final answer.
خطوة 5
خطوة 5.1
نطاق المعكوس هو مدى الدالة الأصلية والعكس صحيح. أوجِد نطاق ومدى و وقارن بينهما.
خطوة 5.2
أوجِد مدى .
خطوة 5.2.1
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
ترميز الفترة:
خطوة 5.3
أوجِد نطاق .
خطوة 5.3.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 5.3.2
أوجِد قيمة .
خطوة 5.3.2.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5.3.2.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 5.3.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.3.2.2.2
اطرح من كلا المتعادلين.
خطوة 5.3.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 5.3.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.3.2.3.2
أوجِد قيمة في .
خطوة 5.3.2.3.2.1
اطرح من كلا المتعادلين.
خطوة 5.3.2.3.2.2
اقسِم كل حد في على وبسّط.
خطوة 5.3.2.3.2.2.1
اقسِم كل حد في على .
خطوة 5.3.2.3.2.2.2
بسّط الطرف الأيسر.
خطوة 5.3.2.3.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.3.2.3.2.2.2.2
اقسِم على .
خطوة 5.3.2.3.2.2.3
بسّط الطرف الأيمن.
خطوة 5.3.2.3.2.2.3.1
اقسِم على .
خطوة 5.3.2.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5.3.2.5
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 5.3.2.6
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
خطوة 5.3.2.6.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.3.2.6.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.3.2.6.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.3.2.6.1.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 5.3.2.6.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.3.2.6.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.3.2.6.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.3.2.6.2.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 5.3.2.6.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.3.2.6.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.3.2.6.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.3.2.6.3.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 5.3.2.6.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
صحيحة
خطأ
خطأ
صحيحة
خطأ
خطوة 5.3.2.7
يتكون الحل من جميع الفترات الصحيحة.
خطوة 5.3.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 5.4
بما أن نطاق لا يساوي مدى ، إذن ليست معكوس .
لا يوجد معكوس
لا يوجد معكوس
خطوة 6