إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 1.2
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.3
ألغِ العامل المشترك لـ .
خطوة 1.3.1
ألغِ العامل المشترك.
خطوة 1.3.2
أعِد كتابة العبارة.
خطوة 1.4
ألغِ العامل المشترك لـ .
خطوة 1.4.1
ألغِ العامل المشترك.
خطوة 1.4.2
اقسِم على .
خطوة 1.5
بسّط كل حد.
خطوة 1.5.1
ألغِ العامل المشترك لـ .
خطوة 1.5.1.1
ألغِ العامل المشترك.
خطوة 1.5.1.2
اقسِم على .
خطوة 1.5.2
طبّق خاصية التوزيع.
خطوة 1.5.3
انقُل إلى يسار .
خطوة 1.5.4
أعِد كتابة بالصيغة .
خطوة 1.5.5
ألغِ العامل المشترك لـ .
خطوة 1.5.5.1
ألغِ العامل المشترك.
خطوة 1.5.5.2
اقسِم على .
خطوة 1.6
انقُل .
خطوة 2
خطوة 2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 2.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 3
خطوة 3.1
أوجِد قيمة في .
خطوة 3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 3.1.2
اقسِم كل حد في على وبسّط.
خطوة 3.1.2.1
اقسِم كل حد في على .
خطوة 3.1.2.2
بسّط الطرف الأيسر.
خطوة 3.1.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.1.2.2.2
اقسِم على .
خطوة 3.1.2.3
بسّط الطرف الأيمن.
خطوة 3.1.2.3.1
اقسِم على .
خطوة 3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
احذِف الأقواس.
خطوة 3.3
أوجِد قيمة في .
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
أضف إلى كلا المتعادلين.
خطوة 3.4
أوجِد حل سلسلة المعادلات.
خطوة 3.5
اسرِد جميع الحلول.
خطوة 4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.