ما قبل التفاضل والتكامل الأمثلة

أوجد التقاطعات مع x و y y=cos(x)
خطوة 1
أوجِد نقاط التقاطع مع المحور السيني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 1.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2.2
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 1.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
القيمة الدقيقة لـ هي .
خطوة 1.2.4
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 1.2.5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.5.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.2.1
اجمع و.
خطوة 1.2.5.2.2
اجمع البسوط على القاسم المشترك.
خطوة 1.2.5.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.3.1
اضرب في .
خطوة 1.2.5.3.2
اطرح من .
خطوة 1.2.6
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 1.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 1.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.2.6.4
اقسِم على .
خطوة 1.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 1.2.8
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني: ، لأي عدد صحيح
نقطة (نقاط) التقاطع مع المحور السيني: ، لأي عدد صحيح
خطوة 2
أوجِد نقاط التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
احذِف الأقواس.
خطوة 2.2.2
القيمة الدقيقة لـ هي .
خطوة 2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 3
اسرِد التقاطعات.
نقطة (نقاط) التقاطع مع المحور السيني: ، لأي عدد صحيح
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 4