ما قبل التفاضل والتكامل الأمثلة

أوجد مجال التعريف f(x) = square root of x^4-16x^2
خطوة 1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حوّل المتباينة إلى معادلة.
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.3
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.2.3.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
اطرح من كلا المتعادلين.
خطوة 2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.6.2
أضف إلى كلا المتعادلين.
خطوة 2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 2.8
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 2.9
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 2.9.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.9.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.9.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.9.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 2.9.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.9.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.9.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.9.2.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 2.9.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.9.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.9.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.9.3.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 2.9.4
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.9.4.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.9.4.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.9.4.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 2.9.5
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
خطأ
صحيحة
صحيحة
خطأ
خطأ
صحيحة
خطوة 2.10
يتكون الحل من جميع الفترات الصحيحة.
أو أو
خطوة 2.11
اجمع الفترات.
خطوة 3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4