ما قبل التفاضل والتكامل الأمثلة

خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
احذِف الأقواس.
خطوة 2.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
أعِد الترتيب.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2.2
انقُل إلى يسار .
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
اطرح من كلا المتعادلين.
خطوة 4.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
أخرِج العامل من .
خطوة 4.3.2
أخرِج العامل من .
خطوة 4.3.3
أخرِج العامل من .
خطوة 4.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
اقسِم كل حد في على .
خطوة 4.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1.1
ألغِ العامل المشترك.
خطوة 4.4.2.1.2
اقسِم على .
خطوة 4.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.3.1
اجمع البسوط على القاسم المشترك.
خطوة 4.4.3.2
أعِد كتابة بالصيغة .
خطوة 4.4.3.3
أخرِج العامل من .
خطوة 4.4.3.4
أخرِج العامل من .
خطوة 4.4.3.5
انقُل السالب أمام الكسر.