إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
خطوة 2.1
حوّل المتباينة إلى معادلة.
خطوة 2.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.4
بسّط.
خطوة 2.4.1
بسّط بَسْط الكسر.
خطوة 2.4.1.1
ارفع إلى القوة .
خطوة 2.4.1.2
اضرب .
خطوة 2.4.1.2.1
اضرب في .
خطوة 2.4.1.2.2
اضرب في .
خطوة 2.4.1.3
اطرح من .
خطوة 2.4.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.1.5
أعِد كتابة بالصيغة .
خطوة 2.4.1.6
أعِد كتابة بالصيغة .
خطوة 2.4.2
اضرب في .
خطوة 2.5
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.5.1
بسّط بَسْط الكسر.
خطوة 2.5.1.1
ارفع إلى القوة .
خطوة 2.5.1.2
اضرب .
خطوة 2.5.1.2.1
اضرب في .
خطوة 2.5.1.2.2
اضرب في .
خطوة 2.5.1.3
اطرح من .
خطوة 2.5.1.4
أعِد كتابة بالصيغة .
خطوة 2.5.1.5
أعِد كتابة بالصيغة .
خطوة 2.5.1.6
أعِد كتابة بالصيغة .
خطوة 2.5.2
اضرب في .
خطوة 2.5.3
غيّر إلى .
خطوة 2.6
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.6.1
بسّط بَسْط الكسر.
خطوة 2.6.1.1
ارفع إلى القوة .
خطوة 2.6.1.2
اضرب .
خطوة 2.6.1.2.1
اضرب في .
خطوة 2.6.1.2.2
اضرب في .
خطوة 2.6.1.3
اطرح من .
خطوة 2.6.1.4
أعِد كتابة بالصيغة .
خطوة 2.6.1.5
أعِد كتابة بالصيغة .
خطوة 2.6.1.6
أعِد كتابة بالصيغة .
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
غيّر إلى .
خطوة 2.7
حدد المعامل الرئيسي.
خطوة 2.7.1
الحد الرئيسي في متعدد الحدود هو الحد ذو الدرجة الأعلى.
خطوة 2.7.2
المعامل الرئيسي في متعدد الحدود هو معامل الحد الرئيسي.
خطوة 2.8
بما أنه لا توجد نقاط تقاطع حقيقية مع المحور السيني والمعامل الرئيسي موجب، إذن القطع المكافئ مفتوح إلى أعلى وقيمة أكبر دائمًا من .
جميع الأعداد الحقيقية
جميع الأعداد الحقيقية
خطوة 3
النطاق هو جميع الأعداد الحقيقية.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4