ما قبل التفاضل والتكامل الأمثلة

أوجد مجال التعريف f(x)=( الجذر التربيعي لـ x+1)/(2-x-x^2)
خطوة 1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
اطرح من كلا طرفي المتباينة.
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
أعِد ترتيب العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1.1
انقُل .
خطوة 4.1.1.1.2
أعِد ترتيب و.
خطوة 4.1.1.2
أخرِج العامل من .
خطوة 4.1.1.3
أخرِج العامل من .
خطوة 4.1.1.4
أعِد كتابة بالصيغة .
خطوة 4.1.1.5
أخرِج العامل من .
خطوة 4.1.1.6
أخرِج العامل من .
خطوة 4.1.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.1.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.1.2.2
احذِف الأقواس غير الضرورية.
خطوة 4.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.2
أضف إلى كلا المتعادلين.
خطوة 4.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.4.2
اطرح من كلا المتعادلين.
خطوة 4.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 6