إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
خطوة 2.1
أضف إلى كلا المتعادلين.
خطوة 2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.3
بسّط .
خطوة 2.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.1
اقسِم كل حد في على .
خطوة 4.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
ألغِ العامل المشترك لـ .
خطوة 4.2.3.1.1
ألغِ العامل المشترك.
خطوة 4.2.3.1.2
اقسِم على .
خطوة 5
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6
خطوة 6.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 6.2
أوجِد قيمة في المعادلة.
خطوة 6.2.1
أخرِج العامل من .
خطوة 6.2.1.1
أخرِج العامل من .
خطوة 6.2.1.2
أخرِج العامل من .
خطوة 6.2.1.3
أخرِج العامل من .
خطوة 6.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6.2.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2.4.2
أضف إلى كلا المتعادلين.
خطوة 6.2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 8
أضف إلى كلا المتعادلين.
خطوة 9
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات: