输入问题...
三角学 示例
解题步骤 1
解题步骤 1.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 1.2
1 和任何表达式的最小公倍数就是该表达式。
解题步骤 2
解题步骤 2.1
将 中的每一项乘以 。
解题步骤 2.2
化简左边。
解题步骤 2.2.1
化简每一项。
解题步骤 2.2.1.1
将 乘以 。
解题步骤 2.2.1.2
约去 的公因数。
解题步骤 2.2.1.2.1
将 中前置负号移到分子中。
解题步骤 2.2.1.2.2
约去公因数。
解题步骤 2.2.1.2.3
重写表达式。
解题步骤 3
解题步骤 3.1
从不等式两边同时减去 。
解题步骤 3.2
把不等式转换成方程。
解题步骤 3.3
使用 AC 法来对 进行因式分解。
解题步骤 3.3.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 3.3.2
使用这些整数书写分数形式。
解题步骤 3.4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 3.5
将 设为等于 并求解 。
解题步骤 3.5.1
将 设为等于 。
解题步骤 3.5.2
在等式两边都加上 。
解题步骤 3.6
将 设为等于 并求解 。
解题步骤 3.6.1
将 设为等于 。
解题步骤 3.6.2
从等式两边同时减去 。
解题步骤 3.7
最终解为使 成立的所有值。
解题步骤 4
解题步骤 4.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 4.2
定义域为使表达式有定义的所有值 。
解题步骤 5
使用每一个根建立验证区间。
解题步骤 6
解题步骤 6.1
检验区间 上的值是否使不等式成立。
解题步骤 6.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 6.1.2
使用原不等式中的 替换 。
解题步骤 6.1.3
左边的 小于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 6.2
检验区间 上的值是否使不等式成立。
解题步骤 6.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 6.2.2
使用原不等式中的 替换 。
解题步骤 6.2.3
左边的 不小于右边的 ,即给定的命题是假命题。
假
假
解题步骤 6.3
检验区间 上的值是否使不等式成立。
解题步骤 6.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 6.3.2
使用原不等式中的 替换 。
解题步骤 6.3.3
左边的 小于右边的 ,即给定的命题恒为真命题。
真
真
解题步骤 6.4
检验区间 上的值是否使不等式成立。
解题步骤 6.4.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 6.4.2
使用原不等式中的 替换 。
解题步骤 6.4.3
左边的 不小于右边的 ,即给定的命题是假命题。
假
假
解题步骤 6.5
比较各区间以判定哪些区间能满足原不等式。
为真
为假
为真
为假
为真
为假
为真
为假
解题步骤 7
解由使等式成立的所有区间组成。
或
解题步骤 8
把不等式转换成区间计数法。
解题步骤 9