输入问题...
三角学 示例
解题步骤 1
从等式两边同时减去 。
解题步骤 2
解题步骤 2.1
使用正弦倍角公式。
解题步骤 2.2
使用三倍角公式把 转换为 。
解题步骤 2.3
运用分配律。
解题步骤 2.4
将 乘以 。
解题步骤 2.5
将 乘以 。
解题步骤 3
解题步骤 3.1
从 中分解出因数 。
解题步骤 3.2
从 中分解出因数 。
解题步骤 3.3
从 中分解出因数 。
解题步骤 3.4
从 中分解出因数 。
解题步骤 3.5
从 中分解出因数 。
解题步骤 4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 5
解题步骤 5.1
将 设为等于 。
解题步骤 5.2
求解 的 。
解题步骤 5.2.1
取方程两边的逆余弦从而提取余弦内的 。
解题步骤 5.2.2
化简右边。
解题步骤 5.2.2.1
的准确值为 。
解题步骤 5.2.3
余弦函数在第一象限和第四象限恒为正。要求第二个解,从 中减去参考角即可求出第四象限中的解。
解题步骤 5.2.4
化简 。
解题步骤 5.2.4.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 5.2.4.2
合并分数。
解题步骤 5.2.4.2.1
组合 和 。
解题步骤 5.2.4.2.2
在公分母上合并分子。
解题步骤 5.2.4.3
化简分子。
解题步骤 5.2.4.3.1
将 乘以 。
解题步骤 5.2.4.3.2
从 中减去 。
解题步骤 5.2.5
求 的周期。
解题步骤 5.2.5.1
函数的周期可利用 进行计算。
解题步骤 5.2.5.2
使用周期公式中的 替换 。
解题步骤 5.2.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 5.2.5.4
用 除以 。
解题步骤 5.2.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 6
解题步骤 6.1
将 设为等于 。
解题步骤 6.2
求解 的 。
解题步骤 6.2.1
使用基于 恒等式的 替换 。
解题步骤 6.2.2
化简每一项。
解题步骤 6.2.2.1
运用分配律。
解题步骤 6.2.2.2
将 乘以 。
解题步骤 6.2.2.3
将 乘以 。
解题步骤 6.2.3
将 和 相加。
解题步骤 6.2.4
重新排列多项式。
解题步骤 6.2.5
代入 替换 。
解题步骤 6.2.6
使用二次公式求解。
解题步骤 6.2.7
将 、 和 的值代入二次公式中并求解 。
解题步骤 6.2.8
化简。
解题步骤 6.2.8.1
化简分子。
解题步骤 6.2.8.1.1
对 进行 次方运算。
解题步骤 6.2.8.1.2
乘以 。
解题步骤 6.2.8.1.2.1
将 乘以 。
解题步骤 6.2.8.1.2.2
将 乘以 。
解题步骤 6.2.8.1.3
将 和 相加。
解题步骤 6.2.8.1.4
将 重写为 。
解题步骤 6.2.8.1.4.1
从 中分解出因数 。
解题步骤 6.2.8.1.4.2
将 重写为 。
解题步骤 6.2.8.1.5
从根式下提出各项。
解题步骤 6.2.8.2
将 乘以 。
解题步骤 6.2.8.3
化简 。
解题步骤 6.2.9
最终答案为两个解的组合。
解题步骤 6.2.10
代入 替换 。
解题步骤 6.2.11
建立每一个解以求解 。
解题步骤 6.2.12
在 中求解 。
解题步骤 6.2.12.1
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 6.2.12.2
化简右边。
解题步骤 6.2.12.2.1
计算 。
解题步骤 6.2.12.3
正弦函数在第三和第四象限中为负值。若要求第二个解,可从 减去这个解,从而求参考角。接着,将该参考角和 相加以求第三象限中的解。
解题步骤 6.2.12.4
化简表达式以求第二个解。
解题步骤 6.2.12.4.1
从 中减去 。
解题步骤 6.2.12.4.2
得出的角 是正角度,比 小,且与 共边。
解题步骤 6.2.12.5
求 的周期。
解题步骤 6.2.12.5.1
函数的周期可利用 进行计算。
解题步骤 6.2.12.5.2
使用周期公式中的 替换 。
解题步骤 6.2.12.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 6.2.12.5.4
用 除以 。
解题步骤 6.2.12.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
解题步骤 6.2.13
在 中求解 。
解题步骤 6.2.13.1
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 6.2.13.2
化简右边。
解题步骤 6.2.13.2.1
计算 。
解题步骤 6.2.13.3
正弦函数在第三和第四象限中为负值。若要求第二个解,可从 减去这个解,从而求参考角。接着,将该参考角和 相加以求第三象限中的解。
解题步骤 6.2.13.4
化简表达式以求第二个解。
解题步骤 6.2.13.4.1
从 中减去 。
解题步骤 6.2.13.4.2
得出的角 是正角度,比 小,且与 共边。
解题步骤 6.2.13.5
求 的周期。
解题步骤 6.2.13.5.1
函数的周期可利用 进行计算。
解题步骤 6.2.13.5.2
使用周期公式中的 替换 。
解题步骤 6.2.13.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 6.2.13.5.4
用 除以 。
解题步骤 6.2.13.6
将 和每一个负角相加以得出正角。
解题步骤 6.2.13.6.1
将 加到 以求正角。
解题步骤 6.2.13.6.2
要将 写成带有公分母的分数,请乘以 。
解题步骤 6.2.13.6.3
合并分数。
解题步骤 6.2.13.6.3.1
组合 和 。
解题步骤 6.2.13.6.3.2
在公分母上合并分子。
解题步骤 6.2.13.6.4
化简分子。
解题步骤 6.2.13.6.4.1
将 乘以 。
解题步骤 6.2.13.6.4.2
从 中减去 。
解题步骤 6.2.13.6.5
列出新角。
解题步骤 6.2.13.7
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
解题步骤 6.2.14
列出所有解。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 7
最终解为使 成立的所有值。
,对于任意整数
解题步骤 8
将 和 合并为 。
,对于任意整数