输入问题...
三角学 示例
解题步骤 1
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 2
解题步骤 2.1
将 设为等于 。
解题步骤 2.2
求解 的 。
解题步骤 2.2.1
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 2.2.2
化简右边。
解题步骤 2.2.2.1
的准确值为 。
解题步骤 2.2.3
正弦函数在第一和第二象限中为正值。若要求第二个解,可从 减去参考角以求第二象限中的解。
解题步骤 2.2.4
从 中减去 。
解题步骤 2.2.5
求 的周期。
解题步骤 2.2.5.1
函数的周期可利用 进行计算。
解题步骤 2.2.5.2
使用周期公式中的 替换 。
解题步骤 2.2.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 2.2.5.4
用 除以 。
解题步骤 2.2.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 3
解题步骤 3.1
将 设为等于 。
解题步骤 3.2
求解 的 。
解题步骤 3.2.1
取方程两边的逆余弦从而提取余弦内的 。
解题步骤 3.2.2
化简右边。
解题步骤 3.2.2.1
的准确值为 。
解题步骤 3.2.3
余弦函数在第一象限和第四象限恒为正。要求第二个解,从 中减去参考角即可求出第四象限中的解。
解题步骤 3.2.4
化简 。
解题步骤 3.2.4.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 3.2.4.2
合并分数。
解题步骤 3.2.4.2.1
组合 和 。
解题步骤 3.2.4.2.2
在公分母上合并分子。
解题步骤 3.2.4.3
化简分子。
解题步骤 3.2.4.3.1
将 乘以 。
解题步骤 3.2.4.3.2
从 中减去 。
解题步骤 3.2.5
求 的周期。
解题步骤 3.2.5.1
函数的周期可利用 进行计算。
解题步骤 3.2.5.2
使用周期公式中的 替换 。
解题步骤 3.2.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 3.2.5.4
用 除以 。
解题步骤 3.2.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 4
最终解为使 成立的所有值。
,对于任意整数
解题步骤 5
合并答案。
,对于任意整数
解题步骤 6
使用每一个根建立验证区间。
解题步骤 7
解题步骤 7.1
检验区间 上的值是否使不等式成立。
解题步骤 7.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 7.1.2
使用原不等式中的 替换 。
解题步骤 7.1.3
左边的 大于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 7.2
检验区间 上的值是否使不等式成立。
解题步骤 7.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 7.2.2
使用原不等式中的 替换 。
解题步骤 7.2.3
左边的 不大于右边的 ,即给定的命题是假命题。
False
False
解题步骤 7.3
检验区间 上的值是否使不等式成立。
解题步骤 7.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 7.3.2
使用原不等式中的 替换 。
解题步骤 7.3.3
左边的 大于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 7.4
检验区间 上的值是否使不等式成立。
解题步骤 7.4.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 7.4.2
使用原不等式中的 替换 。
解题步骤 7.4.3
左边的 不大于右边的 ,即给定的命题是假命题。
False
False
解题步骤 7.5
比较各区间以判定哪些区间能满足原不等式。
为真
为假
为真
为假
为真
为假
为真
为假
解题步骤 8
解由使等式成立的所有区间组成。
或 ,对于任何整数
解题步骤 9
合并区间。
,对于任意整数
解题步骤 10