输入问题...
三角学 示例
解题步骤 1
解题步骤 1.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.2
化简左边。
解题步骤 1.2.1
将两个负数相除得到一个正数。
解题步骤 1.2.2
用 除以 。
解题步骤 1.3
化简右边。
解题步骤 1.3.1
用 除以 。
解题步骤 2
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 3
解题步骤 3.1
的准确值为 。
解题步骤 4
解题步骤 4.1
将 中的每一项都除以 。
解题步骤 4.2
化简左边。
解题步骤 4.2.1
约去 的公因数。
解题步骤 4.2.1.1
约去公因数。
解题步骤 4.2.1.2
用 除以 。
解题步骤 4.3
化简右边。
解题步骤 4.3.1
用 除以 。
解题步骤 5
正弦函数在第一和第二象限中为正值。若要求第二个解,可从 减去参考角以求第二象限中的解。
解题步骤 6
解题步骤 6.1
化简。
解题步骤 6.1.1
将 乘以 。
解题步骤 6.1.2
将 和 相加。
解题步骤 6.2
将 中的每一项除以 并化简。
解题步骤 6.2.1
将 中的每一项都除以 。
解题步骤 6.2.2
化简左边。
解题步骤 6.2.2.1
约去 的公因数。
解题步骤 6.2.2.1.1
约去公因数。
解题步骤 6.2.2.1.2
用 除以 。
解题步骤 7
解题步骤 7.1
函数的周期可利用 进行计算。
解题步骤 7.2
使用周期公式中的 替换 。
解题步骤 7.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 7.4
约去 和 的公因数。
解题步骤 7.4.1
从 中分解出因数 。
解题步骤 7.4.2
约去公因数。
解题步骤 7.4.2.1
从 中分解出因数 。
解题步骤 7.4.2.2
约去公因数。
解题步骤 7.4.2.3
重写表达式。
解题步骤 8
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
解题步骤 9
合并答案。
,对于任意整数
解题步骤 10
使用每一个根建立验证区间。
解题步骤 11
解题步骤 11.1
检验区间 上的值是否使不等式成立。
解题步骤 11.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 11.1.2
使用原不等式中的 替换 。
解题步骤 11.1.3
左边的 不大于右边的 ,即给定的命题是假命题。
False
False
解题步骤 11.2
检验区间 上的值是否使不等式成立。
解题步骤 11.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 11.2.2
使用原不等式中的 替换 。
解题步骤 11.2.3
左边的 大于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 11.3
比较各区间以判定哪些区间能满足原不等式。
为假
为真
为假
为真
解题步骤 12
解由使等式成立的所有区间组成。
,对于任意整数
解题步骤 13