三角学 示例

绘制图像 y=2csc(1/2x-3/4*pi)
解题步骤 1
求渐近线。
点击获取更多步骤...
解题步骤 1.1
对于任意 ,垂直渐近线均出现在 ,其中 为一个整数。使用 的基本周期,求 的垂直渐近线。将余割函数的变量设为,使得 等于 ,以求 的垂直渐进线出现的坐标位置。
解题步骤 1.2
求解
点击获取更多步骤...
解题步骤 1.2.1
在等式两边都加上
解题步骤 1.2.2
等式两边同时乘以
解题步骤 1.2.3
化简方程的两边。
点击获取更多步骤...
解题步骤 1.2.3.1
化简左边。
点击获取更多步骤...
解题步骤 1.2.3.1.1
约去 的公因数。
点击获取更多步骤...
解题步骤 1.2.3.1.1.1
约去公因数。
解题步骤 1.2.3.1.1.2
重写表达式。
解题步骤 1.2.3.2
化简右边。
点击获取更多步骤...
解题步骤 1.2.3.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 1.2.3.2.1.1
中分解出因数
解题步骤 1.2.3.2.1.2
约去公因数。
解题步骤 1.2.3.2.1.3
重写表达式。
解题步骤 1.3
将余割函数 的变量设为
解题步骤 1.4
求解
点击获取更多步骤...
解题步骤 1.4.1
将所有不包含 的项移到等式右边。
点击获取更多步骤...
解题步骤 1.4.1.1
在等式两边都加上
解题步骤 1.4.1.2
要将 写成带有公分母的分数,请乘以
解题步骤 1.4.1.3
组合
解题步骤 1.4.1.4
在公分母上合并分子。
解题步骤 1.4.1.5
化简分子。
点击获取更多步骤...
解题步骤 1.4.1.5.1
乘以
解题步骤 1.4.1.5.2
相加。
解题步骤 1.4.2
等式两边同时乘以
解题步骤 1.4.3
化简方程的两边。
点击获取更多步骤...
解题步骤 1.4.3.1
化简左边。
点击获取更多步骤...
解题步骤 1.4.3.1.1
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.3.1.1.1
约去公因数。
解题步骤 1.4.3.1.1.2
重写表达式。
解题步骤 1.4.3.2
化简右边。
点击获取更多步骤...
解题步骤 1.4.3.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 1.4.3.2.1.1
中分解出因数
解题步骤 1.4.3.2.1.2
约去公因数。
解题步骤 1.4.3.2.1.3
重写表达式。
解题步骤 1.5
的基期将出现在 ,其中 为垂直渐近线。
解题步骤 1.6
求周期 以求出垂直渐近线出现的位置。垂直渐近线每半个周期出现一次。
点击获取更多步骤...
解题步骤 1.6.1
约为 ,因其为正数,所以去掉绝对值
解题步骤 1.6.2
将分子乘以分母的倒数。
解题步骤 1.6.3
乘以
解题步骤 1.7
的垂直渐近线出现在 和每一个 处,其中 是一个整数。这是周期的二分一。
解题步骤 1.8
余割只有垂直渐近线。
不存在水平渐近线
不存在斜渐近线
垂直渐近线:,其中 是一个整数
不存在水平渐近线
不存在斜渐近线
垂直渐近线:,其中 是一个整数
解题步骤 2
使用 的形式求用于求振幅、周期、相移和垂直位移的变量。
解题步骤 3
因为函数 的图像没有最大值或最小值,所以不存在振幅值。
振幅:无
解题步骤 4
的周期。
点击获取更多步骤...
解题步骤 4.1
函数的周期可利用 进行计算。
解题步骤 4.2
使用周期公式中的 替换
解题步骤 4.3
约为 ,因其为正数,所以去掉绝对值
解题步骤 4.4
将分子乘以分母的倒数。
解题步骤 4.5
乘以
解题步骤 5
使用公式 求相移。
点击获取更多步骤...
解题步骤 5.1
函数的相移可通过 计算。
相移:
解题步骤 5.2
替换相移方程中 的值。
相移:
解题步骤 5.3
将分子乘以分母的倒数。
相移:
解题步骤 5.4
约去 的公因数。
点击获取更多步骤...
解题步骤 5.4.1
中分解出因数
相移:
解题步骤 5.4.2
约去公因数。
相移:
解题步骤 5.4.3
重写表达式。
相移:
相移:
相移:
解题步骤 6
列出三角函数的性质。
振幅:无
周期:
相移: 向右移)
垂直位移:无
解题步骤 7
三角函数可通过振幅、周期、相移、垂直位移和相关点来绘制出其图象。
垂直渐近线:,其中 是一个整数
振幅:无
周期:
相移: 向右移)
垂直位移:无
解题步骤 8