输入问题...
三角学 示例
解题步骤 1
将 写为等式。
解题步骤 2
交换变量。
解题步骤 3
解题步骤 3.1
将方程重写为 。
解题步骤 3.2
将 中的每一项除以 并化简。
解题步骤 3.2.1
将 中的每一项都除以 。
解题步骤 3.2.2
化简左边。
解题步骤 3.2.2.1
约去 的公因数。
解题步骤 3.2.2.1.1
约去公因数。
解题步骤 3.2.2.1.2
用 除以 。
解题步骤 3.3
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 3.4
将 中的每一项除以 并化简。
解题步骤 3.4.1
将 中的每一项都除以 。
解题步骤 3.4.2
化简左边。
解题步骤 3.4.2.1
约去 的公因数。
解题步骤 3.4.2.1.1
约去公因数。
解题步骤 3.4.2.1.2
用 除以 。
解题步骤 4
使用 替换 ,以得到最终答案。
解题步骤 5
解题步骤 5.1
要验证反函数,请检查 和 是否成立。
解题步骤 5.2
计算 。
解题步骤 5.2.1
建立复合结果函数。
解题步骤 5.2.2
通过将 的值代入 来计算 。
解题步骤 5.2.3
约去 的公因数。
解题步骤 5.2.3.1
约去公因数。
解题步骤 5.2.3.2
用 除以 。
解题步骤 5.3
计算 。
解题步骤 5.3.1
建立复合结果函数。
解题步骤 5.3.2
通过将 的值代入 来计算 。
解题步骤 5.3.3
约去 的公因数。
解题步骤 5.3.3.1
约去公因数。
解题步骤 5.3.3.2
重写表达式。
解题步骤 5.3.4
正弦函数和反正弦函数互为反函数。
解题步骤 5.3.5
约去 的公因数。
解题步骤 5.3.5.1
约去公因数。
解题步骤 5.3.5.2
重写表达式。
解题步骤 5.4
由于 和 ,因此 为 的反函数。