输入问题...
三角学 示例
csc2(x)cot2(x)-1=sec2(x)1-tan2(x)csc2(x)cot2(x)−1=sec2(x)1−tan2(x)
解题步骤 1
从左边开始。
csc2(x)cot2(x)-1csc2(x)cot2(x)−1
解题步骤 2
解题步骤 2.1
对 csc(x)csc(x) 使用倒数恒等式。
(1sin(x))2cot2(x)-1(1sin(x))2cot2(x)−1
解题步骤 2.2
使用商数恒等式以正弦和余弦书写 cot(x)cot(x)。
(1sin(x))2(cos(x)sin(x))2-1(1sin(x))2(cos(x)sin(x))2−1
解题步骤 2.3
对 1sin(x)1sin(x) 运用乘积法则。
12sin2(x)(cos(x)sin(x))2-112sin2(x)(cos(x)sin(x))2−1
解题步骤 2.4
对 cos(x)sin(x)cos(x)sin(x) 运用乘积法则。
12sin2(x)cos2(x)sin2(x)-112sin2(x)cos2(x)sin2(x)−1
12sin2(x)cos2(x)sin2(x)-112sin2(x)cos2(x)sin2(x)−1
解题步骤 3
解题步骤 3.1
将分子乘以分母的倒数。
12sin(x)2⋅1cos(x)2sin(x)2-112sin(x)2⋅1cos(x)2sin(x)2−1
解题步骤 3.2
一的任意次幂都为一。
1sin(x)2⋅1cos(x)2sin(x)2-11sin(x)2⋅1cos(x)2sin(x)2−1
解题步骤 3.3
化简分母。
解题步骤 3.3.1
将 cos(x)2sin(x)2cos(x)2sin(x)2 重写为 (cos(x)sin(x))2(cos(x)sin(x))2。
1sin(x)2⋅1(cos(x)sin(x))2-11sin(x)2⋅1(cos(x)sin(x))2−1
解题步骤 3.3.2
将 11 重写为 1212。
1sin(x)2⋅1(cos(x)sin(x))2-121sin(x)2⋅1(cos(x)sin(x))2−12
解题步骤 3.3.3
因为两项都是完全平方数,所以使用平方差公式 a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) 进行因式分解,其中 a=cos(x)sin(x)a=cos(x)sin(x) 和 b=1b=1。
1sin(x)2⋅1(cos(x)sin(x)+1)(cos(x)sin(x)-1)1sin(x)2⋅1(cos(x)sin(x)+1)(cos(x)sin(x)−1)
解题步骤 3.3.4
将 11 写成具有公分母的分数。
1sin(x)2⋅1(cos(x)sin(x)+sin(x)sin(x))(cos(x)sin(x)-1)1sin(x)2⋅1(cos(x)sin(x)+sin(x)sin(x))(cos(x)sin(x)−1)
解题步骤 3.3.5
在公分母上合并分子。
1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)-1)1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)−1)
解题步骤 3.3.6
要将 -1−1 写成带有公分母的分数,请乘以 sin(x)sin(x)sin(x)sin(x)。
1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)-1⋅sin(x)sin(x))1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)−1⋅sin(x)sin(x))
解题步骤 3.3.7
组合 -1−1 和 sin(x)sin(x)sin(x)sin(x)。
1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)+-sin(x)sin(x))1sin(x)2⋅1cos(x)+sin(x)sin(x)(cos(x)sin(x)+−sin(x)sin(x))
解题步骤 3.3.8
在公分母上合并分子。
1sin(x)2⋅1cos(x)+sin(x)sin(x)⋅cos(x)-sin(x)sin(x)1sin(x)2⋅1cos(x)+sin(x)sin(x)⋅cos(x)−sin(x)sin(x)
1sin(x)2⋅1cos(x)+sin(x)sin(x)⋅cos(x)-sin(x)sin(x)1sin(x)2⋅1cos(x)+sin(x)sin(x)⋅cos(x)−sin(x)sin(x)
解题步骤 3.4
将 cos(x)+sin(x)sin(x)cos(x)+sin(x)sin(x) 乘以 cos(x)-sin(x)sin(x)cos(x)−sin(x)sin(x)。
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)sin(x)
解题步骤 3.5
化简分母。
解题步骤 3.5.1
对 sin(x) 进行 1 次方运算。
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1sin(x)
解题步骤 3.5.2
对 sin(x) 进行 1 次方运算。
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1sin(x)1
解题步骤 3.5.3
使用幂法则 aman=am+n 合并指数。
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1+1
解题步骤 3.5.4
将 1 和 1 相加。
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
1sin(x)2⋅1(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
解题步骤 3.6
合并。
1⋅1sin(x)2(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
解题步骤 3.7
将 1 乘以 1。
1sin(x)2(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
解题步骤 3.8
组合 sin(x)2 和 (cos(x)+sin(x))(cos(x)-sin(x))sin(x)2。
1sin(x)2((cos(x)+sin(x))(cos(x)-sin(x)))sin(x)2
解题步骤 3.9
通过约去公因数来化简表达式。
1(cos(x)+sin(x))(cos(x)-sin(x))
1(cos(x)+sin(x))(cos(x)-sin(x))
解题步骤 4
将 1(cos(x)+sin(x))(cos(x)-sin(x)) 重写为 sec2(x)1-tan2(x)。
sec2(x)1-tan2(x)
解题步骤 5
因为两边已证明为相等,所以方程为恒等式。
csc2(x)cot2(x)-1=sec2(x)1-tan2(x) 是一个恒等式