输入问题...
三角学 示例
1-(cos(x)+sin(x))(cos(x)+sin(x))sin(x)cos(x)1−(cos(x)+sin(x))(cos(x)+sin(x))sin(x)cos(x)
解题步骤 1
将 11 重写为 1212。
12-(cos(x)+sin(x))(cos(x)+sin(x))sin(x)cos(x)12−(cos(x)+sin(x))(cos(x)+sin(x))sin(x)cos(x)
解题步骤 2
将 (cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x)) 重写为 (cos(x)+sin(x))2(cos(x)+sin(x))2。
12-(cos(x)+sin(x))2sin(x)cos(x)12−(cos(x)+sin(x))2sin(x)cos(x)
解题步骤 3
因为两项都是完全平方数,所以使用平方差公式 a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) 进行因式分解,其中 a=1a=1 和 b=cos(x)+sin(x)b=cos(x)+sin(x)。
(1+cos(x)+sin(x))(1-(cos(x)+sin(x)))sin(x)cos(x)
解题步骤 4
运用分配律。
(1+cos(x)+sin(x))(1-cos(x)-sin(x))sin(x)cos(x)