输入问题...
三角学 示例
解题步骤 1
解题步骤 1.1
化简每一项。
解题步骤 1.1.1
将 重写为正弦和余弦形式。
解题步骤 1.1.2
乘以 。
解题步骤 1.1.2.1
组合 和 。
解题步骤 1.1.2.2
组合 和 。
解题步骤 1.1.2.3
通过指数相加将 乘以 。
解题步骤 1.1.2.3.1
移动 。
解题步骤 1.1.2.3.2
将 乘以 。
解题步骤 1.1.2.3.2.1
对 进行 次方运算。
解题步骤 1.1.2.3.2.2
使用幂法则 合并指数。
解题步骤 1.1.2.3.3
将 和 相加。
解题步骤 1.1.3
将 移到 的左侧。
解题步骤 1.2
化简每一项。
解题步骤 1.2.1
从 中分解出因数 。
解题步骤 1.2.2
分离分数。
解题步骤 1.2.3
将 转换成 。
解题步骤 1.2.4
用 除以 。
解题步骤 2
解题步骤 2.1
从 中分解出因数 。
解题步骤 2.2
从 中分解出因数 。
解题步骤 3
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 4
解题步骤 4.1
将 设为等于 。
解题步骤 4.2
求解 的 。
解题步骤 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
解题步骤 4.2.2
化简 。
解题步骤 4.2.2.1
将 重写为 。
解题步骤 4.2.2.2
假设各项均为正实数,从根式下提出各项。
解题步骤 4.2.2.3
正负 是 。
解题步骤 4.2.3
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 4.2.4
化简右边。
解题步骤 4.2.4.1
的准确值为 。
解题步骤 4.2.5
正弦函数在第一和第二象限中为正值。若要求第二个解,可从 减去参考角以求第二象限中的解。
解题步骤 4.2.6
从 中减去 。
解题步骤 4.2.7
求 的周期。
解题步骤 4.2.7.1
函数的周期可利用 进行计算。
解题步骤 4.2.7.2
使用周期公式中的 替换 。
解题步骤 4.2.7.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 4.2.7.4
用 除以 。
解题步骤 4.2.8
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 5
解题步骤 5.1
将 设为等于 。
解题步骤 5.2
求解 的 。
解题步骤 5.2.1
在等式两边都加上 。
解题步骤 5.2.2
取方程两边的逆正切从而提取正切内的 。
解题步骤 5.2.3
化简右边。
解题步骤 5.2.3.1
的准确值为 。
解题步骤 5.2.4
正切函数在第一和第三象限为正值。要求第二个解,加上来自 的参考角以求第四象限中的解。
解题步骤 5.2.5
化简 。
解题步骤 5.2.5.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 5.2.5.2
合并分数。
解题步骤 5.2.5.2.1
组合 和 。
解题步骤 5.2.5.2.2
在公分母上合并分子。
解题步骤 5.2.5.3
化简分子。
解题步骤 5.2.5.3.1
将 移到 的左侧。
解题步骤 5.2.5.3.2
将 和 相加。
解题步骤 5.2.6
求 的周期。
解题步骤 5.2.6.1
函数的周期可利用 进行计算。
解题步骤 5.2.6.2
使用周期公式中的 替换 。
解题步骤 5.2.6.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 5.2.6.4
用 除以 。
解题步骤 5.2.7
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 6
最终解为使 成立的所有值。
,对于任意整数
解题步骤 7
解题步骤 7.1
将 和 合并为 。
,对于任意整数
解题步骤 7.2
将 和 合并为 。
,对于任意整数
,对于任意整数