输入问题...
三角学 示例
(sec(x)+tan(x))(1-sin(x))(sec(x)+tan(x))(1−sin(x))
解题步骤 1
解题步骤 1.1
将 sec(x)sec(x) 重写为正弦和余弦形式。
(1cos(x)+tan(x))(1-sin(x))(1cos(x)+tan(x))(1−sin(x))
解题步骤 1.2
将 tan(x)tan(x) 重写为正弦和余弦形式。
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1−sin(x))
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1−sin(x))
解题步骤 2
解题步骤 2.1
运用分配律。
1cos(x)(1-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)(1−sin(x))+sin(x)cos(x)(1−sin(x))
解题步骤 2.2
运用分配律。
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)(1−sin(x))
解题步骤 2.3
运用分配律。
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
解题步骤 3
解题步骤 3.1
化简每一项。
解题步骤 3.1.1
将 1cos(x)1cos(x) 乘以 11。
1cos(x)+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
解题步骤 3.1.2
使用乘法的交换性质重写。
1cos(x)-1cos(x)sin(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)−1cos(x)sin(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
解题步骤 3.1.3
组合 sin(x)sin(x) 和 1cos(x)1cos(x)。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)−sin(x)cos(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
解题步骤 3.1.4
将 sin(x)cos(x)sin(x)cos(x) 乘以 11。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(-sin(x))1cos(x)−sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(−sin(x))
解题步骤 3.1.5
使用乘法的交换性质重写。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)cos(x)sin(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)cos(x)sin(x)
解题步骤 3.1.6
乘以 -sin(x)cos(x)sin(x)−sin(x)cos(x)sin(x)。
解题步骤 3.1.6.1
组合 sin(x)sin(x) 和 sin(x)cos(x)sin(x)cos(x)。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)sin(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)sin(x)cos(x)
解题步骤 3.1.6.2
对 sin(x)sin(x) 进行 11 次方运算。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin1(x)sin(x)cos(x)
解题步骤 3.1.6.3
对 sin(x)sin(x) 进行 11 次方运算。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin1(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin1(x)sin1(x)cos(x)
解题步骤 3.1.6.4
使用幂法则 aman=am+naman=am+n 合并指数。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)1+1cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)1+1cos(x)
解题步骤 3.1.6.5
将 11 和 11 相加。
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
解题步骤 3.2
将 -sin(x)cos(x)−sin(x)cos(x) 和 sin(x)cos(x)sin(x)cos(x) 相加。
1cos(x)+0-sin2(x)cos(x)1cos(x)+0−sin2(x)cos(x)
解题步骤 3.3
将 1cos(x)1cos(x) 和 00 相加。
1cos(x)-sin2(x)cos(x)1cos(x)−sin2(x)cos(x)
1cos(x)-sin2(x)cos(x)1cos(x)−sin2(x)cos(x)
解题步骤 4
在公分母上合并分子。
1-sin2(x)cos(x)1−sin2(x)cos(x)
解题步骤 5
使用勾股恒等式。
cos2(x)cos(x)cos2(x)cos(x)
解题步骤 6
解题步骤 6.1
从 cos2(x)cos2(x) 中分解出因数 cos(x)cos(x)。
cos(x)cos(x)cos(x)cos(x)cos(x)cos(x)
解题步骤 6.2
约去公因数。
解题步骤 6.2.1
乘以 11。
cos(x)cos(x)cos(x)⋅1cos(x)cos(x)cos(x)⋅1
解题步骤 6.2.2
约去公因数。
cos(x)cos(x)cos(x)⋅1
解题步骤 6.2.3
重写表达式。
cos(x)1
解题步骤 6.2.4
用 cos(x) 除以 1。
cos(x)
cos(x)
cos(x)