三角学 示例

检验恒等式 cos(x+y)+cos(x-y)=2cos(x)cos(y)
cos(x+y)+cos(x-y)=2cos(x)cos(y)cos(x+y)+cos(xy)=2cos(x)cos(y)
解题步骤 1
从左边开始。
cos(x+y)+cos(x-y)cos(x+y)+cos(xy)
解题步骤 2
使用两角和的公式 cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x-y)cos(x)cos(y)sin(x)sin(y)+cos(xy)
解题步骤 3
使用两角和的公式 cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(-y)-sin(x)sin(-y)cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)sin(x)sin(y)
解题步骤 4
化简表达式。
点击获取更多步骤...
解题步骤 4.1
化简每一项。
点击获取更多步骤...
解题步骤 4.1.1
因为 cos(-y)cos(y) 是一个偶函数,所以将 cos(-y)cos(y) 重写成 cos(y)cos(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)-sin(x)sin(-y)cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)sin(x)sin(y)
解题步骤 4.1.2
因为 sin(-y)sin(y) 是一个奇函数,所以将sin(-y)sin(y) 重写成 -sin(y)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)-sin(x)(-sin(y))cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)sin(x)(sin(y))
解题步骤 4.1.3
乘以 -sin(x)(-sin(y))sin(x)(sin(y))
点击获取更多步骤...
解题步骤 4.1.3.1
-11 乘以 -11
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+1sin(x)sin(y)cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)+1sin(x)sin(y)
解题步骤 4.1.3.2
sin(x)sin(x) 乘以 11
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
解题步骤 4.2
合并 cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y) 中相反的项。
点击获取更多步骤...
解题步骤 4.2.1
-sin(x)sin(y)sin(x)sin(y) 相加。
cos(x)cos(y)+cos(x)cos(y)+0
解题步骤 4.2.2
cos(x)cos(y)+cos(x)cos(y)0 相加。
cos(x)cos(y)+cos(x)cos(y)
cos(x)cos(y)+cos(x)cos(y)
解题步骤 4.3
cos(x)cos(y)cos(x)cos(y) 相加。
2cos(x)cos(y)
2cos(x)cos(y)
解题步骤 5
因为两边已证明为相等,所以方程为恒等式。
cos(x+y)+cos(x-y)=2cos(x)cos(y) 是一个恒等式
 [x2  12  π  xdx ]