输入问题...
三角学 示例
cos(x+y)+cos(x-y)=2cos(x)cos(y)cos(x+y)+cos(x−y)=2cos(x)cos(y)
解题步骤 1
从左边开始。
cos(x+y)+cos(x-y)cos(x+y)+cos(x−y)
解题步骤 2
使用两角和的公式 cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)−sin(x)sin(y)。
cos(x)cos(y)-sin(x)sin(y)+cos(x-y)cos(x)cos(y)−sin(x)sin(y)+cos(x−y)
解题步骤 3
使用两角和的公式 cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)−sin(x)sin(y)。
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(-y)-sin(x)sin(-y)cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(−y)−sin(x)sin(−y)
解题步骤 4
解题步骤 4.1
化简每一项。
解题步骤 4.1.1
因为 cos(-y)cos(−y) 是一个偶函数,所以将 cos(-y)cos(−y) 重写成 cos(y)cos(y)。
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)-sin(x)sin(-y)cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(y)−sin(x)sin(−y)
解题步骤 4.1.2
因为 sin(-y)sin(−y) 是一个奇函数,所以将sin(-y)sin(−y) 重写成 -sin(y)−sin(y)。
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)-sin(x)(-sin(y))cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(y)−sin(x)(−sin(y))
解题步骤 4.1.3
乘以 -sin(x)(-sin(y))−sin(x)(−sin(y))。
解题步骤 4.1.3.1
将 -1−1 乘以 -1−1。
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+1sin(x)sin(y)cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(y)+1sin(x)sin(y)
解题步骤 4.1.3.2
将 sin(x)sin(x) 乘以 11。
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)cos(x)cos(y)−sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)
解题步骤 4.2
合并 cos(x)cos(y)-sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y) 中相反的项。
解题步骤 4.2.1
将 -sin(x)sin(y) 和 sin(x)sin(y) 相加。
cos(x)cos(y)+cos(x)cos(y)+0
解题步骤 4.2.2
将 cos(x)cos(y)+cos(x)cos(y) 和 0 相加。
cos(x)cos(y)+cos(x)cos(y)
cos(x)cos(y)+cos(x)cos(y)
解题步骤 4.3
将 cos(x)cos(y) 和 cos(x)cos(y) 相加。
2cos(x)cos(y)
2cos(x)cos(y)
解题步骤 5
因为两边已证明为相等,所以方程为恒等式。
cos(x+y)+cos(x-y)=2cos(x)cos(y) 是一个恒等式